Mostrar el registro sencillo del ítem

dc.contributor.author
Videla, María Eugenia  
dc.contributor.author
Bruno, Cecilia Ines  
dc.date.available
2023-07-25T17:35:16Z  
dc.date.issued
2022-06  
dc.identifier.citation
Videla, María Eugenia; Bruno, Cecilia Ines; Validación de agrupamientos para representar estructura genética poblacional; Universidad Nacional de Cordoba; AgriScientia; 39; 1; 6-2022; 59-69  
dc.identifier.issn
0327-6244  
dc.identifier.uri
http://hdl.handle.net/11336/205405  
dc.description.abstract
Since the beginning of statistics, the identification of the underlying number of existing groups in a population has been a research question aimed at answering geneticists regarding the structure that is formed by similarities between individuals of one or more populations. Numerous indices have been proposed to obtain the optimal number of groups that make up the population genetic structure (PGS). However, there is no consensus on which are the best. In order to determine the optimal number of groups constituting the PGS, a simulation study was conducted of nine PGS scenarios with three subpopulation numbers (k = 2, 5, and 10) and three levels of genetic differentiation recreating various maize genomes to evaluate four internal validation indices: CH, Connectivity, Dunn and Silhouette. This study found that the Dunn and Silhouette indices had the best performance in identifying the true number of underlying groups while Connectivity had the worst. This study offers a robust alternative to unveil the existing PGS, thereby facilitating population studies and breeding strategies in maize programs. Moreover, the present findings may have implications for other crop species.  
dc.format
application/pdf  
dc.language.iso
spa  
dc.publisher
Universidad Nacional de Cordoba  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLUSTER ANALYSIS  
dc.subject
EXPLORATORY DATA ANALYSIS  
dc.subject
GENETIC DATA  
dc.subject
INDEX SELECTION  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Validación de agrupamientos para representar estructura genética poblacional  
dc.title
Cluster validation to depict population genetic structure  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T18:25:38Z  
dc.identifier.eissn
1668-298X  
dc.journal.volume
39  
dc.journal.number
1  
dc.journal.pagination
59-69  
dc.journal.pais
Argentina  
dc.journal.ciudad
Córdoba  
dc.description.fil
Fil: Videla, María Eugenia. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Área de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola. Grupo Vinculado Catedra de Estadística y Biometría de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba al Ufyma | Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola. Grupo Vinculado Catedra de Estadística y Biometría de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba al Ufyma; Argentina  
dc.journal.title
AgriScientia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.31047/1668.298x.v39.n1.34015  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://revistas.unc.edu.ar/index.php/agris/article/view/34015