Mostrar el registro sencillo del ítem
dc.contributor.author
Videla, María Eugenia
dc.contributor.author
Bruno, Cecilia Ines
dc.date.available
2023-07-25T17:35:16Z
dc.date.issued
2022-06
dc.identifier.citation
Videla, María Eugenia; Bruno, Cecilia Ines; Validación de agrupamientos para representar estructura genética poblacional; Universidad Nacional de Cordoba; AgriScientia; 39; 1; 6-2022; 59-69
dc.identifier.issn
0327-6244
dc.identifier.uri
http://hdl.handle.net/11336/205405
dc.description.abstract
Since the beginning of statistics, the identification of the underlying number of existing groups in a population has been a research question aimed at answering geneticists regarding the structure that is formed by similarities between individuals of one or more populations. Numerous indices have been proposed to obtain the optimal number of groups that make up the population genetic structure (PGS). However, there is no consensus on which are the best. In order to determine the optimal number of groups constituting the PGS, a simulation study was conducted of nine PGS scenarios with three subpopulation numbers (k = 2, 5, and 10) and three levels of genetic differentiation recreating various maize genomes to evaluate four internal validation indices: CH, Connectivity, Dunn and Silhouette. This study found that the Dunn and Silhouette indices had the best performance in identifying the true number of underlying groups while Connectivity had the worst. This study offers a robust alternative to unveil the existing PGS, thereby facilitating population studies and breeding strategies in maize programs. Moreover, the present findings may have implications for other crop species.
dc.format
application/pdf
dc.language.iso
spa
dc.publisher
Universidad Nacional de Cordoba
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLUSTER ANALYSIS
dc.subject
EXPLORATORY DATA ANALYSIS
dc.subject
GENETIC DATA
dc.subject
INDEX SELECTION
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
Otras Ciencias Agrícolas
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Validación de agrupamientos para representar estructura genética poblacional
dc.title
Cluster validation to depict population genetic structure
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T18:25:38Z
dc.identifier.eissn
1668-298X
dc.journal.volume
39
dc.journal.number
1
dc.journal.pagination
59-69
dc.journal.pais
Argentina
dc.journal.ciudad
Córdoba
dc.description.fil
Fil: Videla, María Eugenia. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Departamento de Desarrollo Rural. Área de Estadística y Biometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Bruno, Cecilia Ines. Universidad Nacional de Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola. Grupo Vinculado Catedra de Estadística y Biometría de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba al Ufyma | Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola. Grupo Vinculado Catedra de Estadística y Biometría de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba al Ufyma; Argentina
dc.journal.title
AgriScientia
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.31047/1668.298x.v39.n1.34015
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://revistas.unc.edu.ar/index.php/agris/article/view/34015
Archivos asociados