Mostrar el registro sencillo del ítem

dc.contributor.author
Rey, Andrea Alejandra  
dc.contributor.author
Revollo Sarmiento, Natalia Veronica  
dc.contributor.author
Frery, Alejandro César  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.date.available
2023-07-25T13:45:00Z  
dc.date.issued
2022-11-12  
dc.identifier.citation
Rey, Andrea Alejandra; Revollo Sarmiento, Natalia Veronica; Frery, Alejandro César; Delrieux, Claudio Augusto; Automatic Delineation of Water Bodies in SAR Images with a Novel Stochastic Distance Approach; MDPI; Remote Sensing; 14; 22; 12-11-2022; 1-21  
dc.identifier.issn
2072-4292  
dc.identifier.uri
http://hdl.handle.net/11336/205284  
dc.description.abstract
Coastal regions and surface waters are among the fundamental biological and social development resources worldwide. For this reason, it is essential to thoroughly monitor these regions to determine and characterize their geographical features and environmental health. These geographical regions, however, present several monitoring challenges when using remotely sensed imagery. Small water bodies tend to be surrounded by swamps, marshes, or vegetation, making accurate border detection difficult. Coastal waters, in turn, experience several phenomena due to winds, undercurrents, and waves, which also hamper the detection of environmental hazards like oil spills. In this work, we propose an automated segmentation algorithm that can be applied to these targets in airborne and spaceborne SAR images. The method is based on pointwise detection in fuzzy borders using a parameter estimation of the (Formula presented.) distribution, which has been successfully used in similar contexts. The underlying assumption is that the sought-for border separates regions with different textures, each having different distribution parameters. Then, stochastic distances can identify the most likely point where this parameter change occurs. A curve interpolation algorithm then estimates the actual contour of the body given the detected points. We assess the adequacy of eight stochastic distances that are mostly applied in the literature. We evaluate the performance of our method in terms of similarity between true and detected boundaries on simulated and actual SAR images, achieving promising results. The performance of our proposal is assessed by Hausdorff distance and Intersection over Union. In the case of synthetic data, the selection of the best stochastic distance depends on the parameters of the (Formula presented.) distribution. In contrast, the harmonic-mean and triangular distances produced the best results in detecting borders in three actual SAR images of lagoons. Finally, we present the results of our proposal applied to an image with oil spills using Bhattacharyya, Hellinger, and Jensen–Shannon distances.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
BORDER DETECTION  
dc.subject
SAR IMAGES  
dc.subject
SEGMENTATION  
dc.subject
STOCHASTIC DISTANCES  
dc.subject
WATER BODIES  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic Delineation of Water Bodies in SAR Images with a Novel Stochastic Distance Approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T17:29:19Z  
dc.journal.volume
14  
dc.journal.number
22  
dc.journal.pagination
1-21  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Rey, Andrea Alejandra. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Revollo Sarmiento, Natalia Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Frery, Alejandro César. Victoria University Of Wellington; Nueva Zelanda  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/rs14225716