Mostrar el registro sencillo del ítem

dc.contributor.author
Sabando, María Virginia  
dc.contributor.author
Ponzoni, Ignacio  
dc.contributor.author
Milios, Evangelos E.  
dc.contributor.author
Soto, Axel Juan  
dc.date.available
2023-07-25T13:42:19Z  
dc.date.issued
2021-09-08  
dc.identifier.citation
Sabando, María Virginia; Ponzoni, Ignacio; Milios, Evangelos E.; Soto, Axel Juan; Using molecular embeddings in QSAR modeling: Does it make a difference?; Oxford University Press; Briefings In Bioinformatics; 23; 1; 8-9-2021; 1-21  
dc.identifier.issn
1467-5463  
dc.identifier.uri
http://hdl.handle.net/11336/205283  
dc.description.abstract
With the consolidation of deep learning in drug discovery, several novel algorithms for learning molecular representations have been proposed. Despite the interest of the community in developing new methods for learning molecular embeddings and their theoretical benefits, comparing molecular embeddings with each other and with traditional representations is not straightforward, which in turn hinders the process of choosing a suitable representation for Quantitative Structure-Activity Relationship (QSAR) modeling. A reason behind this issue is the difficulty of conducting a fair and thorough comparison of the different existing embedding approaches, which requires numerous experiments on various datasets and training scenarios. To close this gap, we reviewed the literature on methods for molecular embeddings and reproduced three unsupervised and two supervised molecular embedding techniques recently proposed in the literature. We compared these five methods concerning their performance in QSAR scenarios using different classification and regression datasets. We also compared these representations to traditional molecular representations, namely molecular descriptors and fingerprints. As opposed to the expected outcome, our experimental setup consisting of over $25 000$ trained models and statistical tests revealed that the predictive performance using molecular embeddings did not significantly surpass that of traditional representations. Although supervised embeddings yielded competitive results compared with those using traditional molecular representations, unsupervised embeddings tended to perform worse than traditional representations. Our results highlight the need for conducting a careful comparison and analysis of the different embedding techniques prior to using them in drug design tasks and motivate a discussion about the potential of molecular embeddings in computer-aided drug design.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHEMINFORMATICS  
dc.subject
DEEP LEARNING  
dc.subject
EMBEDDINGS  
dc.subject
MOLECULAR REPRESENTATIONS  
dc.subject
QSAR MODELING  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Using molecular embeddings in QSAR modeling: Does it make a difference?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T17:26:27Z  
dc.journal.volume
23  
dc.journal.number
1  
dc.journal.pagination
1-21  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Sabando, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Milios, Evangelos E.. Massachusetts Institute of Technology; Estados Unidos. Dalhousie University Halifax; Canadá  
dc.description.fil
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Dalhousie University Halifax; Canadá  
dc.journal.title
Briefings In Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bib/article-abstract/23/1/bbab365/6366344?redirectedFrom=fulltext  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bib/bbab365