Mostrar el registro sencillo del ítem
dc.contributor.author
Renaudo, Carlos Alberto
dc.contributor.author
Yommi, Agustin
dc.contributor.author
Slaboch, Gonzalo
dc.contributor.author
Bucala, Veronica
dc.contributor.author
Bertin, Diego Esteban
dc.date.available
2023-07-25T12:15:39Z
dc.date.issued
2022-09
dc.identifier.citation
Renaudo, Carlos Alberto; Yommi, Agustin; Slaboch, Gonzalo; Bucala, Veronica; Bertin, Diego Esteban; Prediction of droplet size distributions from a pre-orifice nozzle using the Maximum Entropy Principle; Elsevier; Chemical Engineering Research & Design; 185; 9-2022; 198-209
dc.identifier.issn
0263-8762
dc.identifier.uri
http://hdl.handle.net/11336/205196
dc.description.abstract
The atomized droplet size distribution (DSD) produced by a nozzle is a fundamental information to define the performance of application systems. In this paper a new model to represent the atomization of a pre-orifice nozzle is presented. It is based on the Maximum Entropy Principle (MEP), the Linearized Instability Sheet Atomization (LISA) model and Computational Fluid Dynamics (CFD) simulations. Different atomization liquids with varied physical properties were sprayed at different pressures and their droplet size distributions were measured for model calibration and validation. The LISA model correctly predicts the effect of the pressure and physical properties of the mixtures on the most probable droplet diameter. The CFD studies allow to predict the influence of the flowrate on the energy source term of the MEP energy balance, which is not negligible. On the other hand, based on the LISA model, the calculated momentum source term does not impact on the DSD prediction significantly. The developed model, which just includes two adjustable parameters, is able to well represent experimental DSDs from a pre-orifice nozzle operating at different pressures.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DROPLET SIZE DISTRIBUTION
dc.subject
MATHEMATICAL MODELING
dc.subject
MAXIMUM ENTROPY PRINCIPLE
dc.subject
PRE-ORIFICE NOZZLE
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Prediction of droplet size distributions from a pre-orifice nozzle using the Maximum Entropy Principle
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T18:22:11Z
dc.journal.volume
185
dc.journal.pagination
198-209
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Renaudo, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Yommi, Agustin. No especifíca;
dc.description.fil
Fil: Slaboch, Gonzalo. No especifíca;
dc.description.fil
Fil: Bucala, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Bertin, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.journal.title
Chemical Engineering Research & Design
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cherd.2022.07.010
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S026387622200346X?via%3Dihub
Archivos asociados