Mostrar el registro sencillo del ítem

dc.contributor.author
Renaudo, Carlos Alberto  
dc.contributor.author
Yommi, Agustin  
dc.contributor.author
Slaboch, Gonzalo  
dc.contributor.author
Bucala, Veronica  
dc.contributor.author
Bertin, Diego Esteban  
dc.date.available
2023-07-25T12:15:39Z  
dc.date.issued
2022-09  
dc.identifier.citation
Renaudo, Carlos Alberto; Yommi, Agustin; Slaboch, Gonzalo; Bucala, Veronica; Bertin, Diego Esteban; Prediction of droplet size distributions from a pre-orifice nozzle using the Maximum Entropy Principle; Elsevier; Chemical Engineering Research & Design; 185; 9-2022; 198-209  
dc.identifier.issn
0263-8762  
dc.identifier.uri
http://hdl.handle.net/11336/205196  
dc.description.abstract
The atomized droplet size distribution (DSD) produced by a nozzle is a fundamental information to define the performance of application systems. In this paper a new model to represent the atomization of a pre-orifice nozzle is presented. It is based on the Maximum Entropy Principle (MEP), the Linearized Instability Sheet Atomization (LISA) model and Computational Fluid Dynamics (CFD) simulations. Different atomization liquids with varied physical properties were sprayed at different pressures and their droplet size distributions were measured for model calibration and validation. The LISA model correctly predicts the effect of the pressure and physical properties of the mixtures on the most probable droplet diameter. The CFD studies allow to predict the influence of the flowrate on the energy source term of the MEP energy balance, which is not negligible. On the other hand, based on the LISA model, the calculated momentum source term does not impact on the DSD prediction significantly. The developed model, which just includes two adjustable parameters, is able to well represent experimental DSDs from a pre-orifice nozzle operating at different pressures.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DROPLET SIZE DISTRIBUTION  
dc.subject
MATHEMATICAL MODELING  
dc.subject
MAXIMUM ENTROPY PRINCIPLE  
dc.subject
PRE-ORIFICE NOZZLE  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Prediction of droplet size distributions from a pre-orifice nozzle using the Maximum Entropy Principle  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T18:22:11Z  
dc.journal.volume
185  
dc.journal.pagination
198-209  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Renaudo, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Yommi, Agustin. No especifíca;  
dc.description.fil
Fil: Slaboch, Gonzalo. No especifíca;  
dc.description.fil
Fil: Bucala, Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Bertin, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.journal.title
Chemical Engineering Research & Design  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cherd.2022.07.010  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S026387622200346X?via%3Dihub