Artículo
Toward a taxonomy for 2D non-paired general line coordinates: a comprehensive survey
Fecha de publicación:
30/08/2022
Editorial:
Springer
Revista:
International Journal of Data Science and Analytics
ISSN:
2364-415X
e-ISSN:
2364-4168
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Multidimensional data visualization is one of the primary foundations supporting data analysis used for understanding the hidden relationships between items and dimensions of complex data. The line-based visualization techniques are a fundamental class of multidimensional visualization techniques and cover an important set of methods that are relevant to the visual exploratory analysis. Recently, General Line Coordinates (GLCs) were introduced. These are losslessly line-based visualization techniques for multidimensional data. Particular cases of GLCs are the non-paired GLCs, which generalize the radial and parallel coordinates and have proved to be highly suitable for visualizing multidimensional data. In this context, we conduct a systematic paper review of the 2D non-paired GLC (2D-NP-GLC) visualization techniques present in the literature. We organize the 2D-NP-GLC contributions in a unified reference framework in which both the representations and the associated interactions are considered. Focusing jointly on these two criteria, we provide a useful common space for the design and development of 2D-NP-GLC techniques. Besides, this framework integrates the 2D-NP-GLC contributions and helps to identify under-explored areas that may be candidates for further research.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Citación
Antonini, Antonella Soledad; Luque, Leandro Emanuel; Ganuza, María Luján; Castro, Silvia Mabel; Toward a taxonomy for 2D non-paired general line coordinates: a comprehensive survey; Springer; International Journal of Data Science and Analytics; 15; 2; 30-8-2022; 133-158
Compartir
Altmétricas