Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Using photographic records to quantify accuracy of bird identifications in citizen science data

Gorleri, Fabricio CarlosIcon ; Jordan, Emilio ArielIcon ; Roesler, Carlos IgnacioIcon ; Monteleone, Diego; Areta, Juan IgnacioIcon
Fecha de publicación: 04/2023
Editorial: Wiley Blackwell Publishing, Inc
Revista: Ibis
ISSN: 0019-1019
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Zoología, Ornitología, Entomología, Etología

Resumen

Citizen science data are increasingly used for biodiversity monitoring. However, concerns are often raised over the accuracy of species identifications in citizen science databases, as data are collected mostly by non-professionals. Misidentifications can simultaneously generate two error types: false positives (erroneous reports of a species) and false negatives (lack of reports of the misidentified species). Large-scale assessments of identification errors should provide insights into the strengths and weaknesses of citizen science data. Here we show that citizen science photographic data for birds are trustworthy overall, although problems arise in hard-to-identify bird groups. We reviewed over 104 000 images of 377 passerine species from the southern Neotropics (Argentina) stored in eBird – a large citizen science platform – and quantified erroneous reports to calculate precision and recall metrics as measures for data accuracy. Precision increases with fewer false positives and recall increases with fewer false negatives; hence, high values of precision and recall will mirror a higher data accuracy. We found that 97% of the photos of all species were correctly identified. Most species (77%; n = 291) showed high accuracy in their identifications (precision and recall > 95%), with 122 species showing no errors. A few hard-to-identify species (10%; n = 40) showed low levels of data quality (63–90% precision or recall). Similarly, few species (12%; n = 46) exhibited intermediate precision or recall scores (90–95%). Further, we uncovered the existence of a complex network of cross-identifications composed of 272 species, with a predominance of tyrant flycatchers and ovenbirds, reflecting the strong traffic of errors that occurs within these families. To our knowledge, our study provides the first large-scale quantification of identification errors in photos submitted by citizen science contributors. We underscore the relevance of performing such assessments to understand how identification errors are distributed across a database before analysing data, and provide tools for citizen science stakeholders to direct more specific efforts toward species that need an improvement in data quality.
Palabras clave: ARGENTINA , EBIRD , FALSE NEGATIVES , FALSE POSITIVES , MISIDENTIFICATIONS , NEOTROPICS , NETWORK ANALYSIS , PASSERINES , PRECISION , RECALL
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.276Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/205123
URL: https://onlinelibrary.wiley.com/doi/10.1111/ibi.13137
DOI: http://dx.doi.org/10.1111/ibi.13137
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos(CICYTTP)
Articulos de CENTRO DE INV.CIENT.Y TRANSFERENCIA TEC A LA PROD
Articulos(IBIGEO)
Articulos de INST.DE BIO Y GEOCIENCIAS DEL NOA
Citación
Gorleri, Fabricio Carlos; Jordan, Emilio Ariel; Roesler, Carlos Ignacio; Monteleone, Diego; Areta, Juan Ignacio; Using photographic records to quantify accuracy of bird identifications in citizen science data; Wiley Blackwell Publishing, Inc; Ibis; 165; 2; 4-2023; 458-471
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES