Mostrar el registro sencillo del ítem

dc.contributor.author
Roffet, Facundo Alejandro  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.contributor.author
Patow, Gustavo  
dc.date.available
2023-07-24T18:00:53Z  
dc.date.issued
2022-09-09  
dc.identifier.citation
Roffet, Facundo Alejandro; Delrieux, Claudio Augusto; Patow, Gustavo; Assessing Multi-Site rs-fMRI-Based Connectomic Harmonization Using Information Theory; MDPI; Brain Sciences; 12; 9; 9-9-2022; 1-16  
dc.identifier.issn
2076-3425  
dc.identifier.uri
http://hdl.handle.net/11336/205101  
dc.description.abstract
Several harmonization techniques have recently been proposed for connectomics/networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) acquired at multiple sites. These techniques have the objective of mitigating site-specific biases that complicate its subsequent analysis and, therefore, compromise the quality of the results when these images are analyzed together. Thus, harmonization is indispensable when large cohorts are required in which the data obtained must be independent of the particular condition of each resonator, its make and model, its calibration, and other features or artifacts that may affect the significance of the acquisition. To date, no assessment of the actual efficacy of these harmonization techniques has been proposed. In this work, we apply recently introduced Information Theory tools to analyze the effectiveness of these techniques, developing a methodology that allows us to compare different harmonization models. We demonstrate the usefulness of this methodology by applying it to some of the most widespread harmonization frameworks and datasets. As a result, we are able to show that some of these techniques are indeed ineffective since the acquisition site can still be determined from the fMRI data after the processing.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
HARMONIZATION  
dc.subject
INFORMATION THEORY  
dc.subject
MULTI-SITE ACQUISITION  
dc.subject
NEUROSCIENCE  
dc.subject
RS-FMRI  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Assessing Multi-Site rs-fMRI-Based Connectomic Harmonization Using Information Theory  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T17:26:08Z  
dc.journal.volume
12  
dc.journal.number
9  
dc.journal.pagination
1-16  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Roffet, Facundo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Patow, Gustavo. Universidad de Girona; España  
dc.journal.title
Brain Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/brainsci12091219