Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Soil moisture estimates over sporadically flooded farmlands: Synergies and biases of remote sensing and in situ sources

Cappelletti, Lucía MaríaIcon ; Sörensson, AnnaIcon ; Salvia, Maria MercedesIcon ; Ruscica, RominaIcon ; Spennemann, Pablo CristianIcon ; Fernández Long, María Elena; Jobbágy, Esteban
Fecha de publicación: 12/2022
Editorial: Taylor & Francis Ltd
Revista: International Journal of Remote Sensing
ISSN: 0143-1161
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Meteorología y Ciencias Atmosféricas

Resumen

Soil moisture plays a key role in hydrological processes in ecosystems and regulates water and energy exchanges between the surface and the atmosphere. Global coverage of surface soil moisture (SSM) satellite estimates makes them a fundamental source of information, while the validation of these estimates is usually based on in situ measurements, ideally from networks that cover areas similar to the satellite data resolution. However, as we expose in this study, both SSM data sources face challenges over extremely flat regions with large SSM variability. A homogenous farming region in the subhumid Pampas of Argentina, characterized by a large interannual rainfall variability as well as a marked annual cycle of rainfall and cropping, was taken as a case study. The region is almost devoid of irrigation and drainage infrastructure, is subject to large episodic flood and waterlogging events and holds an in situ network belonging to the Argentinean National Commission for Space Activities. This in situ network was set to evaluate the soil moisture estimated by satellite missions, such as SMAP and SAOCOM. However, several of these sites have been placed close to homesteads in a more uniform perennial vegetation than the prevailing seasonal crop. In this work, we examine how this placement bias influences SSM dynamics and its interpretation. We find that in situ data fails to capture the large seasonal and daily SSM variability caused by the cropping dynamics as well as the situation of waterlogging. As for the satellite SSM estimates, provided by the SMOS and SMAP missions in this study, while they capture the impact of cropping on SSM, data gaps can hinder robust statistical analysis. During periods of waterlogging, SSM values can lie outside the dynamic range considered valid by satellite missions, and thus are usually removed by users, creating ‘blind spots’ for high soil water content stages in flood-prone lands. Our study underlines the importance of using multiple sources of information to interpret the hydrological status, including data from in situ measurements and remote sensing estimations of SSM as well as, when available, locally collected information such as reports from national, sub-national and private agro-industrial agencies.
Palabras clave: FLOODING , IN SITU SOIL MOISTURE , RAINFED FARMING , REMOTE SENSING SOIL MOISTURE , WATERLOGGING
Ver el registro completo
 
Archivos asociados
Tamaño: 10.09Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/204897
URL: https://www.tandfonline.com/doi/full/10.1080/01431161.2022.2152755
DOI: http://dx.doi.org/10.1080/01431161.2022.2152755
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Articulos(IAFE)
Articulos de INST.DE ASTRONOMIA Y FISICA DEL ESPACIO(I)
Articulos(IMASL)
Articulos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Cappelletti, Lucía María; Sörensson, Anna; Salvia, Maria Mercedes; Ruscica, Romina; Spennemann, Pablo Cristian; et al.; Soil moisture estimates over sporadically flooded farmlands: Synergies and biases of remote sensing and in situ sources; Taylor & Francis Ltd; International Journal of Remote Sensing; 43; 19-24; 12-2022; 6979-7001
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES