Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An evolutionary approach for the optimization of the beekeeping value chain

de Meio Reggiani, Martín CarlosIcon ; Villar, Luciana BelénIcon ; Vigier, Hernan Pedro; Brignole, Nélida BeatrizIcon
Fecha de publicación: 21/02/2022
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

Evolutionary algorithms can efficiently be applied in broad practical issues by tailoring their operators to the specific combinatorial optimization problem under study. Based on Genetic Algorithms, this paper proposes a master–slave strategy enhanced with an ad hoc chromosome redefinition for the beekeeping value chain problem. Boolean and real genes are combined in a single chromosome to include a wide variety of decision-making optimization variables. Since production usually involves temporal dependency among processes, crossover and mutation operators were properly adjusted. Moreover, novel crossover and mutation operators were designed to make sure that all ensuing individuals were feasible. Since the evaluation of chromosomes may become time-consuming, parallel programming was adopted so that the Workers can simultaneously explore different instances. In particular, the model was implemented in order to optimize the beekeeping value chain aiming at the maximization of the Net Present Value. The results show that the improved algorithm is useful to make economic-financial decisions concerning the beekeeping activity in the southwest of Buenos Aires (Argentina). The proposed approach manages to boost the space search, always yielding realistic scenarios.
Palabras clave: BEEKEEPING , CROSSOVER , GENETIC ALGORITHM , MUTATION , OPTIMIZATION , VALUE CHAIN
Ver el registro completo
 
Archivos asociados
Tamaño: 3.266Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/204803
URL: https://www.sciencedirect.com/science/article/pii/S0168169922001041
DOI: http://dx.doi.org/10.1016/j.compag.2022.106787
Colecciones
Articulos(IIESS)
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Citación
de Meio Reggiani, Martín Carlos; Villar, Luciana Belén; Vigier, Hernan Pedro; Brignole, Nélida Beatriz; An evolutionary approach for the optimization of the beekeeping value chain; Elsevier; Computers and Eletronics in Agriculture; 194; 106787; 21-2-2022; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES