Artículo
A converse sampling theorem in reproducing kernel Banach spaces
Fecha de publicación:
12/2022
Editorial:
Birkhauser
Revista:
Sampling Theory, Signal Processing, and Data Analysis
ISSN:
2730-5716
e-ISSN:
2730-5724
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We present a converse Kramer type sampling theorem over semi-inner product reproducing kernel Banach spaces. Assuming that a sampling expansion holds for every f belonging to a semi-inner product reproducing kernel Banach space B for a fixed sequence of interpolating functions {aj-1Sj(t)}j and a subset of sampling points {tj}j, it results that such sequence must be a Xd∗-Riesz basis and a sampling basis for the space. Moreover, there exists an equivalent (in norm) reproducing kernel Banach space with a reproducing kernel Gsamp such that {a¯j-1Gsamp(tj,.)}j and {aj-1Sj(.)}j are biorthogonal. These results are a generalization of some known results over reproducing kernel Hilbert spaces.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Centeno, Hernan Diego; Medina, Juan Miguel; A converse sampling theorem in reproducing kernel Banach spaces; Birkhauser; Sampling Theory, Signal Processing, and Data Analysis; 20; 2; 12-2022; 1-19
Compartir
Altmétricas