Mostrar el registro sencillo del ítem

dc.contributor.author
Antezana, Jorge Abel  
dc.contributor.author
Marzo, Jordi  
dc.contributor.author
Ortega Cerdà, Joaquim  
dc.date.available
2023-07-20T15:54:16Z  
dc.date.issued
2021-08  
dc.identifier.citation
Antezana, Jorge Abel; Marzo, Jordi; Ortega Cerdà, Joaquim; Necessary conditions for interpolation by multivariate polynomials; Springer; Computational Methods and Function Theory; 21; 4; 8-2021; 831-849  
dc.identifier.issn
1617-9447  
dc.identifier.uri
http://hdl.handle.net/11336/204665  
dc.description.abstract
Let Ω be a smooth, bounded, convex domain in Rn and let Λ k be a finite subset of Ω. We find necessary geometric conditions for Λ k to be interpolating for the space of multivariate polynomials of degree at most k. Our results are asymptotic in k. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for k large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most k.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
INTERPOLATING SEQUENCES  
dc.subject
MULTIVARIATE POLYNOMIALS  
dc.subject
REPRODUCING KERNELS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Necessary conditions for interpolation by multivariate polynomials  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-16T18:01:46Z  
dc.identifier.eissn
2195-3724  
dc.journal.volume
21  
dc.journal.number
4  
dc.journal.pagination
831-849  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Marzo, Jordi. Universidad de Barcelona; España  
dc.description.fil
Fil: Ortega Cerdà, Joaquim. Universidad de Barcelona; España  
dc.journal.title
Computational Methods and Function Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s40315-021-00410-8  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s40315-021-00410-8