Mostrar el registro sencillo del ítem
dc.contributor.author
Antezana, Jorge Abel
dc.contributor.author
Marzo, Jordi
dc.contributor.author
Ortega Cerdà, Joaquim
dc.date.available
2023-07-20T15:54:16Z
dc.date.issued
2021-08
dc.identifier.citation
Antezana, Jorge Abel; Marzo, Jordi; Ortega Cerdà, Joaquim; Necessary conditions for interpolation by multivariate polynomials; Springer; Computational Methods and Function Theory; 21; 4; 8-2021; 831-849
dc.identifier.issn
1617-9447
dc.identifier.uri
http://hdl.handle.net/11336/204665
dc.description.abstract
Let Ω be a smooth, bounded, convex domain in Rn and let Λ k be a finite subset of Ω. We find necessary geometric conditions for Λ k to be interpolating for the space of multivariate polynomials of degree at most k. Our results are asymptotic in k. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for k large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most k.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
INTERPOLATING SEQUENCES
dc.subject
MULTIVARIATE POLYNOMIALS
dc.subject
REPRODUCING KERNELS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Necessary conditions for interpolation by multivariate polynomials
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-06-16T18:01:46Z
dc.identifier.eissn
2195-3724
dc.journal.volume
21
dc.journal.number
4
dc.journal.pagination
831-849
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Marzo, Jordi. Universidad de Barcelona; España
dc.description.fil
Fil: Ortega Cerdà, Joaquim. Universidad de Barcelona; España
dc.journal.title
Computational Methods and Function Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s40315-021-00410-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s40315-021-00410-8
Archivos asociados