Mostrar el registro sencillo del ítem
dc.contributor.author
Bonomo, Flavia
dc.contributor.author
de Souza Oliveira, Fabiano
dc.contributor.author
Sampaio Jr., Moysés S.
dc.contributor.author
Szwarcfiter, Jayme L.
dc.date.available
2023-07-20T13:55:20Z
dc.date.issued
2022-12
dc.identifier.citation
Bonomo, Flavia; de Souza Oliveira, Fabiano; Sampaio Jr., Moysés S.; Szwarcfiter, Jayme L.; Precedence thinness in graphs; Elsevier Science; Discrete Applied Mathematics; 323; 12-2022; 76-95
dc.identifier.issn
0166-218X
dc.identifier.uri
http://hdl.handle.net/11336/204633
dc.description.abstract
Interval and proper interval graphs are very well-known graph classes, for which there is a wide literature. As a consequence, some generalizations of interval graphs have been proposed, in which graphs in general are expressed in terms of k interval graphs, by splitting the graph in some special way. As a recent example of such an approach, the classes of k-thin and proper k-thin graphs have been introduced generalizing interval and proper interval graphs, respectively. The complexity of the recognition of each of these classes is still open, even for fixed k≥2. In this work, we introduce a subclass of k-thin graphs (resp. proper k-thin graphs), called precedence k-thin graphs (resp. precedence proper k-thin graphs). Concerning partitioned precedence k-thin graphs, we present a polynomial time recognition algorithm based on PQ trees. With respect to partitioned precedence proper k-thin graphs, we prove that the related recognition problem is NP-complete for an arbitrary k and polynomial-time solvable when k is fixed. Moreover, we present a characterization for these classes based on threshold graphs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
(PROPER) K-THIN GRAPHS
dc.subject
CHARACTERIZATION
dc.subject
PRECEDENCE (PROPER) K-THIN GRAPHS
dc.subject
RECOGNITION ALGORITHM
dc.subject
THRESHOLD GRAPHS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Precedence thinness in graphs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:23:46Z
dc.journal.volume
323
dc.journal.pagination
76-95
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.description.fil
Fil: de Souza Oliveira, Fabiano. Universidade do Estado de Rio do Janeiro; Brasil
dc.description.fil
Fil: Sampaio Jr., Moysés S.. Universidade Federal do Rio de Janeiro; Brasil
dc.description.fil
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil. Universidade do Estado de Rio do Janeiro; Brasil
dc.journal.title
Discrete Applied Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2021.05.020
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X21002092
Archivos asociados