Mostrar el registro sencillo del ítem
dc.contributor.author
Ferrer, Luciana
dc.contributor.author
Castan, Diego
dc.contributor.author
Mclaren, Mitchell
dc.contributor.author
Lawson, Aaron
dc.date.available
2023-07-20T13:53:03Z
dc.date.issued
2022-07
dc.identifier.citation
Ferrer, Luciana; Castan, Diego; Mclaren, Mitchell; Lawson, Aaron; A Discriminative Hierarchical PLDA-Based Model for Spoken Language Recognition; Institute of Electrical and Electronics Engineers; IEEE/ACM Transactions on Audio Speech and Language Processing; 30; 7-2022; 2396-2410
dc.identifier.issn
2329-9304
dc.identifier.uri
http://hdl.handle.net/11336/204631
dc.description.abstract
Spoken language recognition (SLR) refers to the automatic process used to determine the language present in a speech sample. SLR is an important task in its own right, for example, as a tool to analyze or categorize large amounts of multi-lingual data. Further, it is also an essential tool for selecting downstream applications in a work flow, for example, to chose appropriate speech recognition or machine translation models. SLR systems are usually composed of two stages, one where an embedding representing the audio sample is extracted and a second one which computes the final scores for each language. In this work, we approach the SLR task as a detection problem and implement the second stage as a probabilistic linear discriminant analysis (PLDA) model. We show that discriminative training of the PLDA parameters gives large gains with respect to the usual generative training. Further, we propose a novel hierarchical approach where two PLDA models are trained, one to generate scores for clusters of highly-related languages and a second one to generate scores conditional to each cluster. The final language detection scores are computed as a combination of these two sets of scores. The complete model is trained discriminatively to optimize a cross-entropy objective. We show that this hierarchical approach consistently outperforms the non-hierarchical one for detection of highly related languages, in many cases by large margins. We train our systems on a collection of datasets including over 100 languages, and test them both on matched and mismatched conditions, showing that the gains are robust to condition mismatch.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DISCRIMINATIVE TRAINING
dc.subject
PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS
dc.subject
SPOKEN LANGUAGE RECOGNITION
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Discriminative Hierarchical PLDA-Based Model for Spoken Language Recognition
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T22:23:43Z
dc.journal.volume
30
dc.journal.pagination
2396-2410
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva Jersey
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Castan, Diego. Sri International; Estados Unidos
dc.description.fil
Fil: Mclaren, Mitchell. Sri International; Estados Unidos
dc.description.fil
Fil: Lawson, Aaron. Sri International; Estados Unidos
dc.journal.title
IEEE/ACM Transactions on Audio Speech and Language Processing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TASLP.2022.3190736
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9844653
Archivos asociados