Artículo
Thinness of product graphs
Bonomo, Flavia
; González, Carolina Lucía
; de Souza Oliveira, Fabiano; Sampaio Jr., Moysés S.; Szwarcfiter, Jayme L.
Fecha de publicación:
05/2022
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The thinness of a graph is a width parameter that generalizes some properties of interval graphs, which are exactly the graphs of thinness one. Many NP-complete problems can be solved in polynomial time for graphs with bounded thinness, given a suitable representation of the graph. In this paper we study the thinness and its variations of graph products. We show that the thinness behaves “well” in general for products, in the sense that for most of the graph products defined in the literature, the thinness of the product of two graphs is bounded by a function (typically product or sum) of their thinness, or of the thinness of one of them and the size of the other. We also show for some cases the non-existence of such a function.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Bonomo, Flavia; González, Carolina Lucía; de Souza Oliveira, Fabiano; Sampaio Jr., Moysés S.; Szwarcfiter, Jayme L.; Thinness of product graphs; Elsevier Science; Discrete Applied Mathematics; 312; 5-2022; 52-71
Compartir
Altmétricas