Mostrar el registro sencillo del ítem

dc.contributor.author
Sarache Piña, Alirio Johan  
dc.contributor.author
Godino, Dario Martin  
dc.contributor.author
Corzo, Santiago Francisco  
dc.contributor.author
Ramajo, Damian Enrique  
dc.date.available
2023-07-20T12:10:31Z  
dc.date.issued
2022-06  
dc.identifier.citation
Sarache Piña, Alirio Johan; Godino, Dario Martin; Corzo, Santiago Francisco; Ramajo, Damian Enrique; Air injection in vertical water column: Experimental test and numerical simulation using volume of fluid and two-fluid methods; Pergamon-Elsevier Science Ltd; Chemical Engineering Science; 255; 1176; 6-2022; 1-16  
dc.identifier.issn
0009-2509  
dc.identifier.uri
http://hdl.handle.net/11336/204566  
dc.description.abstract
A novel test consisting on fast air injection into a vertical water column was experimentally and numerically studied. Measurements were focused on capturing the air–water interface as well as the volume of water evicted by the air, for a wide range of air flow rates. The numerical simulations, were performed with the Eulerian Two-Fluid (TF) and the Volume of Fluid (VOF) methods.For the TF method three topologies were considered: bubbly flow, dropUNR Universidad Nacional de Rosario flow, and blending. The last is a more smart methodology to automatically handle with the different flow regimes. For the VOF method, the standar VOF (SVOF), the Adaptive Mesh Refinement (AMR), and the high order Piecewise Linear Interface Calculation (PLIC) methods were assessed. SVOF and TF blending methods were choice to study the mesh convergence and turbulence modeling. Two-dimensional (2D) meshes of 2, 1 and 0.5 mm, and three-dimensional (3D) meshes of 2, 1 and 0.75 mm were considered. In all cases the standard VOF (SVOF) formulation showed mesh convergence and good agreement with experiments. The error for the finest 3D mesh was around 1%, but increased up to 20% for the finest 2D mesh. On the other hand, for the TF method mesh convergence was only evidenced for the 2D meshes. Regard the TF method, the bubbly and drop topology cases led to unacceptable solutions both in terms of inteface capturing as well as liquid evicted. On the other hand, the blending methodology clearly improved the estimations, although the interface was only partially captured because of the numerical diffusion. On the other hand, all the VOF methods were in relative good agreement both in terms of the liquid evicted as well as interface capturing. Errors were were reduced by refining the mesh. The initial swelling, with small bubbles and large slugs around the air injector was well captured, and the ligaments and drops spilled for high air flow rates were quite well estimated. The SVOF method showed low computational cost for coarse grids, but the computing time increased more than linearly with the mesh size. The AMR method showed accurate solutions, but the computing cost was largely increased with the refining level. Finally, the use of PLIC method for the coarser mesh reduced the error from 15% (SVOF) to 3.5% keeping low the computing cost.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ADAPTATIVE MESH REFINEMENT  
dc.subject
AIR–WATER COLUMN  
dc.subject
CFD  
dc.subject
EXPERIMENTAL TEST  
dc.subject
PLIC  
dc.subject
TWO-FLUID  
dc.subject
VOF  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Air injection in vertical water column: Experimental test and numerical simulation using volume of fluid and two-fluid methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-07T21:02:42Z  
dc.journal.volume
255  
dc.journal.number
1176  
dc.journal.pagination
1-16  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Sarache Piña, Alirio Johan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Godino, Dario Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Corzo, Santiago Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina  
dc.description.fil
Fil: Ramajo, Damian Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Nacional del Litoral; Argentina  
dc.journal.title
Chemical Engineering Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ces.2022.117665  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0009250922002494