Artículo
Fractional eigenvalues in Orlicz spaces with no Δ2 condition
Fecha de publicación:
08/2022
Editorial:
Elsevier
Revista:
Journal Of Differential Equations
ISSN:
0022-0396
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the eigenvalue problem for the g-Laplacian operator in fractional order Orlicz-Sobolev spaces, where g=G′ and neither G nor its conjugated function satisfy the Δ2 condition. Our main result is the existence of a nontrivial solution to such a problem; this is achieved by first showing that the corresponding minimization problem has a solution and then applying a generalized Lagrange multiplier theorem to get the existence of an eigenvalue. Further, we prove closedness of the spectrum and some properties of the eigenvalues and, as an application, we show existence for a class of nonlinear eigenvalue problems.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Salort, Ariel Martin; Vivas, Hernán Agustín; Fractional eigenvalues in Orlicz spaces with no Δ2 condition; Elsevier; Journal Of Differential Equations; 327; 8-2022; 166-188
Compartir
Altmétricas