Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale

Schottlender, Gustavo; Prieto, Juan Manuel; Palumbo, Miranda Clara; Castello, Florencia AndreaIcon ; Serral, FedericoIcon ; Sosa, EzequielIcon ; Turjanskiri, Adrián; Marti, Marcelo AdrianIcon ; Fernández Do Porto, Darío AugustoIcon
Fecha de publicación: 10/2022
Editorial: Frontiers Media
Revista: Frontiers in Drug Discovery
e-ISSN: 2674-0338
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Phenotypic screening is a powerful technique that allowed the discovery of antimicrobials to fight infectious diseases considered deadly less than a century ago. In high throughput phenotypic screening assays, thousands of compounds are tested for their capacity to inhibit microbial growth in-vitro. After an active compound is found, identifying the molecular target is the next step. Knowing the specific target is key for understanding its mechanism of action, and essential for future drug development. Moreover, this knowledge allows drug developers to design new generations of drugs with increased efficacy and reduced side effects. However, target identification for a known active compound is usually a very difficult task. In the present work, we present a powerful reverse virtual screening strategy, that can help researchers working in the drug discovery field, to predict a set of putative targets for a compound known to exhibit antimicrobial effects. The strategy combines chemical similarity methods, with target prioritization based on essentiality data, and molecular-docking. These steps can be tailored according to the researchers? needs and pathogen?s available information. Our results show that using only the chemical similarity approach, this method is capable of retrieving potential targets for half of tested compounds. The results show that even for a low chemical similarity threshold whenever domains are retrieved, the correct domain is among those retrieved in more than 80% of the queries. Prioritizing targets by an essentiality criteria allows us to further reduce, up to 3?4 times, the number of putative targets. Lastly, docking is able to identify the correct domain ranked in the top two in about two thirds of cases. Bias docking improves predictive capacity only slightly in this scenario. We expect to integrate the presented strategy in the context of Target Pathogen database to make it available for the wide community of researchers working in antimicrobials discovery.
Palabras clave: VIRTUAL SCREEENING , ANTIMICROBIALS , DRUG DISCOVERY , PHENOTYPIC SCREENING , MOLECULAR DOCKING , CHEMICAL SIMILARITY , NEGLECTED DISEASES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.195Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/204476
URL: https://www.frontiersin.org/articles/10.3389/fddsv.2022.969983/full
DOI: https://doi.org/10.3389/fddsv.2022.969983
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Schottlender, Gustavo; Prieto, Juan Manuel; Palumbo, Miranda Clara; Castello, Florencia Andrea; Serral, Federico; et al.; From drugs to targets: Reverse engineering the virtual screening process on a proteomic scale; Frontiers Media; Frontiers in Drug Discovery; 2; 969983; 10-2022; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES