Mostrar el registro sencillo del ítem
dc.contributor.author
Sacco, Maximiliano Antonio
dc.contributor.author
Ruiz, Juan Jose
dc.contributor.author
Pulido, Manuel Arturo
dc.contributor.author
Tandeo, Pierre
dc.date.available
2023-07-19T12:00:24Z
dc.date.issued
2022-10
dc.identifier.citation
Sacco, Maximiliano Antonio; Ruiz, Juan Jose; Pulido, Manuel Arturo; Tandeo, Pierre; Evaluation of machine learning techniques for forecast uncertainty quantification; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 148; 749; 10-2022; 3470-3490
dc.identifier.issn
0035-9009
dc.identifier.uri
http://hdl.handle.net/11336/204394
dc.description.abstract
Ensemble forecasting is, so far, the most successful approach to produce relevant forecasts with an estimation of their uncertainty. The main limitations of ensemble forecasting are the high computational cost and the difficulty to capture and quantify different sources of uncertainty, particularly those associated with model errors. In this article we perform toy-model and state-of-the-art model experiments to analyze to what extent artificial neural networks (ANNs) are able to model the different sources of uncertainty present in a forecast. In particular, those associated with the accuracy of the initial conditions and those introduced by the model error. We also compare different training strategies: one based on a direct training using the mean and spread of an ensemble forecast as target, and the other ones rely on an indirect training strategy using an analyzed state as target in which the uncertainty is implicitly learned from the data. Experiments using the Lorenz'96 model show that the ANNs are able to emulate some of the properties of ensemble forecasts like the filtering of the most unpredictable modes and a state-dependent quantification of the forecast uncertainty. Moreover, ANNs provide a reliable estimation of the forecast uncertainty in the presence of model error. Preliminary experiments conducted with a state-of-the-art forecasting system also confirm the ability of ANNs to produce a reliable quantification of the forecast uncertainty.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHAOTIC DYNAMIC MODELS
dc.subject
FORECAST
dc.subject
NEURAL NETWORKS
dc.subject
OBSERVATION LIKELIHOOD LOSS FUNCTION
dc.subject
UNCERTAINTY QUANTIFICATION
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Evaluation of machine learning techniques for forecast uncertainty quantification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T19:19:09Z
dc.journal.volume
148
dc.journal.number
749
dc.journal.pagination
3470-3490
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Sacco, Maximiliano Antonio. Universidad de Buenos Aires; Argentina. Ministerio de Defensa; Argentina
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
dc.description.fil
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina
dc.description.fil
Fil: Tandeo, Pierre. Laboratoire Des Sciences Et Techniques de L'information, de la Communication Et de la Connaissance; Francia
dc.journal.title
Quarterly Journal of the Royal Meteorological Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/qj.4362
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4362
Archivos asociados