Mostrar el registro sencillo del ítem

dc.contributor.author
Ruiz Suarez, Sofia Helena  
dc.contributor.author
Leos Barajas, Vianey  
dc.contributor.author
Morales, Juan Manuel  
dc.date.available
2023-07-19T11:52:44Z  
dc.date.issued
2022-06  
dc.identifier.citation
Ruiz Suarez, Sofia Helena; Leos Barajas, Vianey; Morales, Juan Manuel; Hidden Markov and Semi-Markov Models When and Why are These Models Useful for Classifying States in Time Series Data?; Amer Statistical Assoc & Int Biometric Soc; Journal Of Agricultural Biological And Environmental Statistics; 27; 2; 6-2022; 339-363  
dc.identifier.issn
1085-7117  
dc.identifier.uri
http://hdl.handle.net/11336/204387  
dc.description.abstract
Hidden Markov models (HMMs) and their extensions have proven to be powerful tools for classification of observations that stem from systems with temporal dependence as they take into account that observations close in time are likely generated from the same state (i.e., class). When information on the classes of the observations is available in advanced, supervised methods can be applied. In this paper, we provide details for the implementation of four models for classification in a supervised learning context: HMMs, hidden semi-Markov models (HSMMs), autoregressive-HMMs, and autoregressive-HSMMs. Using simulations, we study the classification performance under various degrees of model misspecification to characterize when it would be important to extend a basic HMM to an HSMM. As an application of these techniques we use the models to classify accelerometer data from Merino sheep to distinguish between four different behaviors of interest. In particular in the field of movement ecology, collection of fine-scale animal movement data over time to identify behavioral states has become ubiquitous, necessitating models that can account for the dependence structure in the data. We demonstrate that when the aim is to conduct classification, various degrees of model misspecification of the proposed model may not impede good classification performance unless there is high overlap between the state-dependent distributions, that is, unless the observation distributions of the different states are difficult to differentiate. Supplementary materials accompanying this paper appear on-line.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Amer Statistical Assoc & Int Biometric Soc  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANIMAL BEHAVIOR  
dc.subject
CLASSIFICATION  
dc.subject
MOVEMENT ECOLOGY  
dc.subject
TEMPORAL DEPENDENCE  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Hidden Markov and Semi-Markov Models When and Why are These Models Useful for Classifying States in Time Series Data?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-29T10:23:47Z  
dc.journal.volume
27  
dc.journal.number
2  
dc.journal.pagination
339-363  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Ruiz Suarez, Sofia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Económicas y Estadística; Argentina  
dc.description.fil
Fil: Leos Barajas, Vianey. University of Toronto; Canadá  
dc.description.fil
Fil: Morales, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.journal.title
Journal Of Agricultural Biological And Environmental Statistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13253-021-00483-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s13253-021-00483-x