Artículo
Weighted norm inequalities for the maximal functions associated to a critical radius function on variable Lebesgue spaces
Fecha de publicación:
12/2022
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we obtain boundedness on weighted variable Lebesgue spaces of some maximal functions that come from the localized analysis considering a critical radius function. This analysis appears naturally in the context of the Schrödinger operator L=−Δ+V in Rd, where V a non-negative potential which satisfying a some specific reverse Hölder condition. We consider new classes of weights that locally behave as the Muckenhoupt class for Lebesgue spaces with variable exponents considered in [6] and actually including them.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Cabral, Enrique Adrian; Weighted norm inequalities for the maximal functions associated to a critical radius function on variable Lebesgue spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 516; 2; 12-2022; 1-15
Compartir
Altmétricas