Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Linear or non-linear multivariate calibration models? That is the question

Allegrini, FrancoIcon ; Olivieri, Alejandro CesarIcon
Fecha de publicación: 11/09/2022
Editorial: Elsevier Science
Revista: Analytica Chimica Acta
ISSN: 0003-2670
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Concepts from data science, machine learning, deep learning and artificial neural networks are spreading in many disciplines. The general idea is to exploit the power of statistical tools to interpret complex and, in many cases, non-linear data. Specifically in analytical chemistry, many chemometrics tools are being developed. However, they tend to get more complex without necessarily improving the prediction ability, which conspires against parsimony. In this report, we show how non-linear analytical data sets can be solved with equal or better efficiency by easily interpretable modified linear models, based on the concept of local sample selection before model building. The latter activity is conducted by choosing a sub-set of samples located in the neighborhood of each unknown sample in the space spanned by the latent variables. Two experimental examples related to the use of near infrared spectroscopy for the analysis of target properties in food samples are examined. The comparison with seemingly more complex chemometric models reveals that local regression is able to achieve similar analytical performance, with considerably less computational burden.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , LOCAL PARTIAL LEAST-SQUARES , NEAR INFRARED SPECTROSCOPY , NON-LINEAR SYSTEMS
Ver el registro completo
 
Archivos asociados
Tamaño: 2.449Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/204191
URL: https://www.sciencedirect.com/science/article/pii/S0003267022008194
DOI: http://dx.doi.org/10.1016/j.aca.2022.340248
Colecciones
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Allegrini, Franco; Olivieri, Alejandro Cesar; Linear or non-linear multivariate calibration models? That is the question; Elsevier Science; Analytica Chimica Acta; 1226; 11-9-2022; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES