Mostrar el registro sencillo del ítem
dc.contributor.author
Bianco, Ana Maria
dc.contributor.author
Boente Boente, Graciela Lina
dc.contributor.author
Chebi, Gonzalo
dc.date.available
2023-07-14T20:35:35Z
dc.date.issued
2022-09
dc.identifier.citation
Bianco, Ana Maria; Boente Boente, Graciela Lina; Chebi, Gonzalo; Penalized robust estimators in sparse logistic regression; Springer; Test; 31; 3; 9-2022; 563-594
dc.identifier.issn
1133-0686
dc.identifier.uri
http://hdl.handle.net/11336/204063
dc.description.abstract
Sparse covariates are frequent in classification and regression problems where the task of variable selection is usually of interest. As it is well known, sparse statistical models correspond to situations where there are only a small number of nonzero parameters, and for that reason, they are much easier to interpret than dense ones. In this paper, we focus on the logistic regression model and our aim is to address robust and penalized estimation for the regression parameter. We introduce a family of penalized weighted M-type estimators for the logistic regression parameter that are stable against atypical data. We explore different penalization functions including the so-called Sign penalty. We provide a careful analysis of the estimators convergence rates as well as their variable selection capability and asymptotic distribution for fixed and random penalties. A robust cross-validation criterion is also proposed. Through a numerical study, we compare the finite sample performance of the classical and robust penalized estimators, under different contamination scenarios. The analysis of real datasets enables to investigate the stability of the penalized estimators in the presence of outliers.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
LOGISTIC REGRESSION
dc.subject
OUTLIERS
dc.subject
PENALTY FUNCTIONS
dc.subject
ROBUST ESTIMATION
dc.subject
SPARSE MODELS
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Penalized robust estimators in sparse logistic regression
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-03T16:19:40Z
dc.journal.volume
31
dc.journal.number
3
dc.journal.pagination
563-594
dc.journal.pais
Alemania
dc.description.fil
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Chebi, Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Test
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11749-021-00792-w
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-021-00792-w
Archivos asociados