Mostrar el registro sencillo del ítem

dc.contributor.author
Bianco, Ana Maria  
dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Chebi, Gonzalo  
dc.date.available
2023-07-14T20:35:35Z  
dc.date.issued
2022-09  
dc.identifier.citation
Bianco, Ana Maria; Boente Boente, Graciela Lina; Chebi, Gonzalo; Penalized robust estimators in sparse logistic regression; Springer; Test; 31; 3; 9-2022; 563-594  
dc.identifier.issn
1133-0686  
dc.identifier.uri
http://hdl.handle.net/11336/204063  
dc.description.abstract
Sparse covariates are frequent in classification and regression problems where the task of variable selection is usually of interest. As it is well known, sparse statistical models correspond to situations where there are only a small number of nonzero parameters, and for that reason, they are much easier to interpret than dense ones. In this paper, we focus on the logistic regression model and our aim is to address robust and penalized estimation for the regression parameter. We introduce a family of penalized weighted M-type estimators for the logistic regression parameter that are stable against atypical data. We explore different penalization functions including the so-called Sign penalty. We provide a careful analysis of the estimators convergence rates as well as their variable selection capability and asymptotic distribution for fixed and random penalties. A robust cross-validation criterion is also proposed. Through a numerical study, we compare the finite sample performance of the classical and robust penalized estimators, under different contamination scenarios. The analysis of real datasets enables to investigate the stability of the penalized estimators in the presence of outliers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
LOGISTIC REGRESSION  
dc.subject
OUTLIERS  
dc.subject
PENALTY FUNCTIONS  
dc.subject
ROBUST ESTIMATION  
dc.subject
SPARSE MODELS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Penalized robust estimators in sparse logistic regression  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-03T16:19:40Z  
dc.journal.volume
31  
dc.journal.number
3  
dc.journal.pagination
563-594  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Chebi, Gonzalo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Test  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11749-021-00792-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11749-021-00792-w