Mostrar el registro sencillo del ítem

dc.contributor.author
Adamczyk, Aleksandra K.  
dc.contributor.author
Huijben, Teun A. P. M.  
dc.contributor.author
Sison, Miguel  
dc.contributor.author
Di Luca, Andrea  
dc.contributor.author
Chiarelli, Germán  
dc.contributor.author
Vanni, Stefano  
dc.contributor.author
Brasselet, Sophie  
dc.contributor.author
Mortensen, Kim I.  
dc.contributor.author
Stefani, Fernando Daniel  
dc.contributor.author
Pilo-Pais, Mauricio  
dc.contributor.author
Acuna, Guillermo P.  
dc.date.available
2023-07-13T14:31:14Z  
dc.date.issued
2022-10  
dc.identifier.citation
Adamczyk, Aleksandra K.; Huijben, Teun A. P. M.; Sison, Miguel; Di Luca, Andrea; Chiarelli, Germán; et al.; DNA Self-Assembly of Single Molecules with Deterministic Position and Orientation; American Chemical Society; ACS Nano; 16; 10; 10-2022; 16924-16931  
dc.identifier.issn
1936-0851  
dc.identifier.uri
http://hdl.handle.net/11336/203780  
dc.description.abstract
An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge. Here, we show how single molecules, namely, Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving unpaired bases in the scaffold. Increasing the number of bases unpaired induces a stretching of the fluorophore linkers, reducing its mobility freedom, and leaves more space for the fluorophore to accommodate and find different sites for interaction with the DNA. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 bases unpaired and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double-helix, respectively. We foresee that these results will expand the application field of DNA origami toward the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nanoantenna modes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DNA NANOTECHNOLOGY  
dc.subject
DNA ORIGAMI  
dc.subject
NANOFABRICATION  
dc.subject
NANOPHOTONICS  
dc.subject
SINGLE-MOLECULE FLUORESCENCE  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
DNA Self-Assembly of Single Molecules with Deterministic Position and Orientation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-10T11:52:11Z  
dc.journal.volume
16  
dc.journal.number
10  
dc.journal.pagination
16924-16931  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Adamczyk, Aleksandra K.. Universite de Fribourg;  
dc.description.fil
Fil: Huijben, Teun A. P. M.. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Sison, Miguel. Institut Fresnel; Francia  
dc.description.fil
Fil: Di Luca, Andrea. Universite de Fribourg;  
dc.description.fil
Fil: Chiarelli, Germán. Universite de Fribourg;  
dc.description.fil
Fil: Vanni, Stefano. Universite de Fribourg;  
dc.description.fil
Fil: Brasselet, Sophie. Institut Fresnel; Francia  
dc.description.fil
Fil: Mortensen, Kim I.. Technical University of Denmark; Dinamarca  
dc.description.fil
Fil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina  
dc.description.fil
Fil: Pilo-Pais, Mauricio. Universite de Fribourg;  
dc.description.fil
Fil: Acuna, Guillermo P.. Universite de Fribourg;  
dc.journal.title
ACS Nano  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsnano.2c06936