Mostrar el registro sencillo del ítem
dc.contributor.author
Carballido, Jessica Andrea
dc.contributor.author
Cecchini, Rocío Luján
dc.date.available
2023-07-13T13:29:54Z
dc.date.issued
2022-06-15
dc.identifier.citation
Carballido, Jessica Andrea; Cecchini, Rocío Luján; Differential gene expression in cancer: An overrated analysis?; Bentham Science Publishers; Current Bioinformatics; 17; 5; 15-6-2022; 396-400
dc.identifier.issn
1574-8936
dc.identifier.uri
http://hdl.handle.net/11336/203705
dc.description.abstract
The search for marker genes associated with different pathologies traditionally begins with some form of differential expression analysis. This step is essential in most functional genomics' works that analyze gene expression data. In the present article, we present a different analysis, starting from the known biological significance of different groups of genes and then assessing the proportion of differentially expressed genes. The analysis is performed in the context of cancer expression data to unveil the true importance of differential expression, approaching it from different research objectives. Firstly, it was seen that the percentage of differentially expressed genes is generally low concerning gene sets annotated in KEGG. On the other hand, it was observed that in the training and prediction process of both statistical and machine learning models, the fact of using differentially expressed genes sustainably improves their results.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Bentham Science Publishers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AMIGO
dc.subject
CANCER EXPRESSION DATA
dc.subject
DIFFERENTIAL EXPRESSION ANALYSIS (DE)
dc.subject
KEGG
dc.subject
RNA SEQUENCING EXPRESSION
dc.subject
TCGA
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Differential gene expression in cancer: An overrated analysis?
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-06T17:24:52Z
dc.identifier.eissn
2212-392X
dc.journal.volume
17
dc.journal.number
5
dc.journal.pagination
396-400
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Oak Park
dc.description.fil
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.journal.title
Current Bioinformatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2174/1574893617666220422134525
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.eurekaselect.com/article/122804
Archivos asociados