Mostrar el registro sencillo del ítem

dc.contributor.author
Carballido, Jessica Andrea  
dc.contributor.author
Cecchini, Rocío Luján  
dc.date.available
2023-07-13T13:29:54Z  
dc.date.issued
2022-06-15  
dc.identifier.citation
Carballido, Jessica Andrea; Cecchini, Rocío Luján; Differential gene expression in cancer: An overrated analysis?; Bentham Science Publishers; Current Bioinformatics; 17; 5; 15-6-2022; 396-400  
dc.identifier.issn
1574-8936  
dc.identifier.uri
http://hdl.handle.net/11336/203705  
dc.description.abstract
The search for marker genes associated with different pathologies traditionally begins with some form of differential expression analysis. This step is essential in most functional genomics' works that analyze gene expression data. In the present article, we present a different analysis, starting from the known biological significance of different groups of genes and then assessing the proportion of differentially expressed genes. The analysis is performed in the context of cancer expression data to unveil the true importance of differential expression, approaching it from different research objectives. Firstly, it was seen that the percentage of differentially expressed genes is generally low concerning gene sets annotated in KEGG. On the other hand, it was observed that in the training and prediction process of both statistical and machine learning models, the fact of using differentially expressed genes sustainably improves their results.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Bentham Science Publishers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AMIGO  
dc.subject
CANCER EXPRESSION DATA  
dc.subject
DIFFERENTIAL EXPRESSION ANALYSIS (DE)  
dc.subject
KEGG  
dc.subject
RNA SEQUENCING EXPRESSION  
dc.subject
TCGA  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Differential gene expression in cancer: An overrated analysis?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T17:24:52Z  
dc.identifier.eissn
2212-392X  
dc.journal.volume
17  
dc.journal.number
5  
dc.journal.pagination
396-400  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Oak Park  
dc.description.fil
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
Current Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2174/1574893617666220422134525  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.eurekaselect.com/article/122804