Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Think Outside the Lab: Modeling Graphene Quantum Dots in Pandemic Times

Melia, Lucas FabiánIcon ; Barrionuevo, SantiagoIcon ; Ibañez, Francisco JavierIcon
Fecha de publicación: 02/2022
Editorial: American Chemical Society
Revista: Journal Of Chemical Education
ISSN: 0021-9584
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Nanotecnología

Resumen

A computational laboratory experiment is carried out to investigate the size-, geometry-, and chemistry-dependent properties of small molecules known as polycyclic aromatic hydrocarbons (PAHs) at the Facultad de Ingeniería (Universidad Nacional de La Plata, UNLP), Buenos Aires, Argentina. This computational research was adapted for upper-division undergraduate and initial graduate education levels. Due to the adverse circumstances of the pandemic, students were challenged to perform theoretical calculations on a regular computer at home. They were able to model PAH molecules similar to graphene quantum dots (GQDs) and learn how to use various open and freely available softwares, including visual molecular dynamics (VMD), Avogadro, nanoHUB.org, and ORCA. Through these computational tools, students designed PAHs of various sizes, geometries, and functional groups in order to study some of their optoelectronic properties. They simulated UV-vis absorbance spectra based on changes in size, geometry, and chemistry at the edges of the GQDs. Students then calculated the energy of the HOMO-LUMO gap and compared using three different methods included in ORCA corresponding to Hartree-Fock (H-F) approximation, density functional theory (DFT), and time-dependent DFT (TD-DFT). Finally, based on the results obtained, students propose the construction of more efficient solar devices by tuning the size and geometry of GQDs.
Palabras clave: Upper-Division Undergaduate , Graduate Education/Research , Physical Chemistry , Quantum Chemistry
Ver el registro completo
 
Archivos asociados
Tamaño: 2.508Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/203694
URL: https://pubs.acs.org/doi/10.1021/acs.jchemed.1c00879
DOI: http://dx.doi.org/10.1021/acs.jchemed.1c00879
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Melia, Lucas Fabián; Barrionuevo, Santiago; Ibañez, Francisco Javier; Think Outside the Lab: Modeling Graphene Quantum Dots in Pandemic Times; American Chemical Society; Journal Of Chemical Education; 99; 2; 2-2022; 745-751
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES