Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Using Graphene Field-Effect Transistors for Real-Time Monitoring of Dynamic Processes at Sensing Interfaces. Benchmarking Performance against Surface Plasmon Resonance

Scotto, JulianaIcon ; Cantillo, Agustin; Piccinini, EstebanIcon ; Fenoy, Gonzalo EduardoIcon ; Allegretto, Juan AlejandroIcon ; Piccinini, José M.; Marmisollé, Waldemar AlejandroIcon ; Azzaroni, OmarIcon
Fecha de publicación: 08/2022
Editorial: American Chemical Society
Revista: ACS Applied Electronic Materials
ISSN: 2637-6113
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

Graphene field-effect transistors (gFETs) are promising tools for the development of precise and affordable techniques for the study of molecular binding kinetics, crucial in applications such as biomolecule therapies, drug discovery, and medical diagnostics. Nevertheless, determining the reliability and modeling the gFET signal for the monitoring of molecular binding and adsorption are still needed. Here, we prove that the gFET technology allows monitoring in real time the adsorption of both positive and negative polyelectrolytes, used as model charged macromolecules, using a low-cost portable gFET setup (Zaphyrus-W10), whose graphene channel was produced by reduction of graphene oxide. The gFET response is compared and validated against the surface plasmon resonance (SPR) technique. Remarkably, the electronic response is directly correlated with the mass adsorption, and very similar kinetic profiles are obtained for both techniques. Moreover, the adsorption kinetics of a polyelectrolyte assembled in a layer-by-layer give evidence that, even at ionic strengths near to the physiological conditions, the electrostatic interactions can be sensed at large distances from the graphene surface (20-fold higher in comparison to the solution Debye length). Biasing the gFET with a Ag/AgCl coplanar gate electrode avoids capacitive current contributions from nonbinding phenomena and displays a transistor signal proportional to the adsorbed mass. Furthermore, a marked amplification of the electronic signal without alteration of the macromolecule adsorption kinetics by using a Ag/AgCl gate in comparison with a nongated device is evidenced. Thus, the suitability of the coplanar-gated gFET technology for the study of molecular binding kinetics is illustrated.
Palabras clave: BINDING KINETICS , ELECTROLYTE-GATED FIELD-EFFECT TRANSISTOR (EG-FET) , GRAPHENE , LAYER-BY-LAYER (LBL) , MACROMOLECULES , POLYELECTROLYTE MULTILAYER (PEM) , SENSOR , SURFACE PLASMON RESONANCE (SPR)
Ver el registro completo
 
Archivos asociados
Tamaño: 4.305Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/203684
URL: https://pubs.acs.org/doi/10.1021/acsaelm.2c00624
DOI: https://doi.org/10.1021/acsaelm.2c00624
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Scotto, Juliana; Cantillo, Agustin; Piccinini, Esteban; Fenoy, Gonzalo Eduardo; Allegretto, Juan Alejandro; et al.; Using Graphene Field-Effect Transistors for Real-Time Monitoring of Dynamic Processes at Sensing Interfaces. Benchmarking Performance against Surface Plasmon Resonance; American Chemical Society; ACS Applied Electronic Materials; 4; 8; 8-2022; 3988-3996
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES