Mostrar el registro sencillo del ítem

dc.contributor.author
Valverde, Esteban Raul  
dc.contributor.author
Clemente, Gisela Vanesa  
dc.contributor.author
Arini, Pedro David  
dc.contributor.author
Vampa, Victoria Cristina  
dc.date.available
2023-07-13T11:59:16Z  
dc.date.issued
2021-08  
dc.identifier.citation
Valverde, Esteban Raul; Clemente, Gisela Vanesa; Arini, Pedro David; Vampa, Victoria Cristina; Wavelet-based entropy and complexity to identify cardiac electrical instability in patients post myocardial infarction; Elsevier; Biomedical Signal Processing and Control; 69; 8-2021; 1-8  
dc.identifier.issn
1746-8094  
dc.identifier.uri
http://hdl.handle.net/11336/203651  
dc.description.abstract
Myocardial infarction (MI) has been long recognized as the main cause of malignant ventricular arrhythmia and/or sudden cardiac death. The region of myocardial scars is related to conduction abnormalities that are rejected as fragmentation of the QRS complexes, which could persist several months after the acute event. In the present work, we evaluated the normalized entropy (H) and the statistical complexity (C) of QRS complexes, by using the continuous wavelet transform, as an effective method to quantify abnormal alterations in cardiac electrical activity in post-MI patients. We have included the standard 12-leads electrocardiogram (ECG) records of healthy subjects (CTRL), n = 48, and MI patients without ventricular tachycardia (VT) and/or fibrillation (VF), grouped in MI healing (MI7), n = 84, and healed (MI60), n = 41, phases. The mean H and C values (H‾ and C‾) of each subject were calculated. H‾ significantly increased and C‾ significantly decreased (p < 0.05) for MI7, and were sustained in MI60, with respect to CTRL. We integrated all the ECG leads in a single multi-lead criteria (H‾ML and C‾ML). Moreover, we separated MI patients according to the infarcted area in anterior and inferior subsets. H‾ML and C‾ML showed the same trends as H‾ and C‾ for total patients and both infarcted areas subsets, with the advantage that higher values of sensitivity and specificity were obtained. In conclusion, wavelet entropy and statistical complexity applied to ECG records give new insight into the analysis of patients post-MI, who have not suffered VT/VF, in both MI stages, independently of the infarction areas analyzed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
ECG SIGNAL PROCESSING  
dc.subject
FRAGMENTED QRS  
dc.subject
HEALING/HEALED  
dc.subject
PTB DATABASE  
dc.subject
VT/VF  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Wavelet-based entropy and complexity to identify cardiac electrical instability in patients post myocardial infarction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-20T15:49:51Z  
dc.journal.volume
69  
dc.journal.pagination
1-8  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Valverde, Esteban Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina  
dc.description.fil
Fil: Clemente, Gisela Vanesa. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Arini, Pedro David. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Vampa, Victoria Cristina. Universidad Nacional de La Plata; Argentina  
dc.journal.title
Biomedical Signal Processing and Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1746809421004432  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bspc.2021.102846