Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Restricted Hamming-Huffman Trees

Lin, Min ChihIcon ; de Souza Oliveira, Fabiano; Pinto, Paulo E. D.; Sampaio, Moysés S.; Szwarcfiter, Jayme L.
Fecha de publicación: 06/2022
Editorial: EDP Sciences
Revista: RAIRO - Operations Research
ISSN: 2804-7303
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación; Matemática Aplicada

Resumen

We study a special case of HammingHuffman trees, in which both data compression and data error detection are tackled on the same structure. Given a hypercube Qn of dimension n, we are interested in some aspects of its vertex neighborhoods. For a subset L of vertices of Qn, the neighborhood of L is defined as the union of the neighborhoods of the vertices of L. The minimum neighborhood problem is that of determining the minimum neighborhood cardinality over all those sets L. This is a well-known problem that has already been solved. Our interest lies in determining optimal HammingHuffman trees, a problem that remains open and which is related to minimum neighborhoods in Qn. In this work, we consider a restricted version of HammingHuffman trees, called [k]-HHT s, which admit symbol leaves in at most k different levels. We present an algorithm to build optimal [2]-HHT s. For uniform frequencies, we prove that an optimal HHT is always a [5]-HHT and that there exists an optimal HHT which is a [4]-HHT. Also, considering experimental results, we conjecture that there exists an optimal tree which is a [3]-HHT.
Palabras clave: HAMMINGHUFFMAN CODES , HYPERCUBE GRAPHS , MINIMUM NEIGHBORHOOD
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.259Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/203619
DOI: https://doi.org/10.1051/ro/2022066
URL: https://www.rairo-ro.org/articles/ro/abs/2022/03/ro210431/ro210431.html
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Lin, Min Chih; de Souza Oliveira, Fabiano; Pinto, Paulo E. D.; Sampaio, Moysés S.; Szwarcfiter, Jayme L.; Restricted Hamming-Huffman Trees; EDP Sciences; RAIRO - Operations Research; 56; 3; 6-2022; 1823-1839
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES