Mostrar el registro sencillo del ítem
dc.contributor.author
Kontorovsky, Natalia Lucía
dc.contributor.author
Pinasco, Juan Pablo
dc.contributor.author
Vazquez, Federico
dc.date.available
2023-07-13T09:55:48Z
dc.date.issued
2022-03
dc.identifier.citation
Kontorovsky, Natalia Lucía; Pinasco, Juan Pablo; Vazquez, Federico; Random multi-player games; American Institute of Physics; Chaos; 32; 3; 3-2022; 1-14
dc.identifier.issn
1054-1500
dc.identifier.uri
http://hdl.handle.net/11336/203611
dc.description.abstract
The study of evolutionary games with pairwise local interactions has been of interest to many different disciplines. Also, local interactions with multiple opponents had been considered, although always for a fixed amount of players. In many situations, however, interactions between different numbers of players in each round could take place, and this case cannot be reduced to pairwise interactions. In this work, we formalize and generalize the definition of evolutionary stable strategy (ESS) to be able to include a scenario in which the game is played by two players with probability p and by three players with the complementary probability 1-p. We show the existence of equilibria in pure and mixed strategies depending on the probability p, on a concrete example of the duel-truel game. We find a range of p values for which the game has a mixed equilibrium and the proportion of players in each strategy depends on the particular value of p. We prove that each of these mixed equilibrium points is ESS. A more realistic way to study this dynamics with high-order interactions is to look at how it evolves in complex networks. We introduce and study an agent-based model on a network with a fixed number of nodes, which evolves as the replicator equation predicts. By studying the dynamics of this model on random networks, we find that the phase transitions between the pure and mixed equilibria depend on probability p and also on the mean degree of the network. We derive mean-field and pair approximation equations that give results in good agreement with simulations on different networks.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
game theory
dc.subject
evolutionary
dc.subject
multiplayer
dc.subject
random
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Random multi-player games
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-03T16:20:59Z
dc.identifier.eissn
1089-7682
dc.journal.volume
32
dc.journal.number
3
dc.journal.pagination
1-14
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Kontorovsky, Natalia Lucía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.journal.title
Chaos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article/32/3/033128/2835766/Random-multi-player-games
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1063/5.0080137
Archivos asociados