Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artificial neural networks for mnodelling the degradation of emerging contaminants Process

Alvarez, Dolores María Eugenia; Gerbaldo, María VerónicaIcon ; Mario Roberto, Modesti; Mendieta, Silvia Nazaret; Crivello, Mónica ElsieIcon
Fecha de publicación: 18/09/2022
Editorial: Springer/Plenum Publishers
Revista: Topics In Catalysis
ISSN: 1022-5528
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Procesos Químicos

Resumen

Diclofenac sodium is an emerging contaminant that can be harmful for ecology and human health. This substance can be degraded by a heterogeneous Photo-Fenton process, CoFe2O4 as catalyst, H2O2 as oxidant and UV radiation. The aims of the work are the comparison of different artificial neural networks to characterize the relationship between diclofenac degradation and H2O2 consumption, with the Total Organic Carbon achieved in the mineralization of the drug and the testing of the selected model capacity to predict the Total Organic Carbon concentration, by employing the reused catalyst. The best performing backpropagation neural network was constituted with a ten neurons hidden layer with sigmoid transfer function and one linear neuron, as output. It was determined that the model can approximate the trend between the input data (Absorbance and H2O2 concentration) and output ones (Total Organic Carbon concentration) when it was validated with data from reactions employing CoFe2O4 for second and third time. The development of these models is of interest due to the consequent reduction of time and costs in experimental work. It represents a study of the evolution of chemical indicators in the treatment of emerging contaminants.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , CO-FERRITES , EMERGING CONTAMINANTS , MODELS , VALIDATION
Ver el registro completo
 
Archivos asociados
Tamaño: 827.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/203419
DOI: http://dx.doi.org/10.1007/s11244-022-01674-7
URL: https://link.springer.com/article/10.1007/s11244-022-01674-7
Colecciones
Articulos(CITEQ)
Articulos de CENTRO DE INVESTIGACION Y TECNOLOGIA QUIMICA
Citación
Alvarez, Dolores María Eugenia; Gerbaldo, María Verónica; Mario Roberto, Modesti; Mendieta, Silvia Nazaret; Crivello, Mónica Elsie; Artificial neural networks for mnodelling the degradation of emerging contaminants Process; Springer/Plenum Publishers; Topics In Catalysis; 65; 13-16; 18-9-2022; 1440-1446
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES