Mostrar el registro sencillo del ítem
dc.contributor.author
Di Scala, Antonio Jose'
dc.contributor.author
Olmos, Carlos Enrique
dc.contributor.author
Vittone, Francisco
dc.date.available
2023-07-12T11:22:11Z
dc.date.issued
2022-03
dc.identifier.citation
Di Scala, Antonio Jose'; Olmos, Carlos Enrique; Vittone, Francisco; Homogeneous Riemannian manifolds with non-trivial nullity; Springer; Transformation Groups; 27; 1; 3-2022; 31-72
dc.identifier.issn
1083-4362
dc.identifier.uri
http://hdl.handle.net/11336/203389
dc.description.abstract
We develop a general theory for irreducible homogeneous spaces M = G/H, in relation to the nullity distribution ν of their curvature tensor. We construct natural invariant (different and increasing) distributions associated with the nullity, that give a deep insight of such spaces. In particular, there must exist an order-two transvection, not in the nullity, with null Jacobi operator. This fact was very important for finding out the first homogeneous examples with non-trivial nullity, i.e., where the nullity distribution is not parallel. Moreover, we construct irreducible examples of conullity k = 3, the smallest possible, in any dimension. None of our examples admit a quotient of finite volume. We also proved that H is trivial and G is solvable if k = 3. Another of our main results is that the leaves, i.e., the integral manifolds, of the nullity are closed (we used a rather delicate argument). This implies that M is a Euclidean affine bundle over the quotient by the leaves of ν. Moreover, we prove that ν⊥ defines a metric connection on this bundle with transitive holonomy or, equivalently, ν⊥ is completely non-integrable (this is not in general true for an arbitrary autoparallel and at invariant distribution). We also found some general obstruction for the existence of non-trivial nullity: e.g., if G is reductive (in particular, if M is compact), or if G is two-step nilpotent.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
HOMOGENEOUS RIEMANNIAN GEOMETRY
dc.subject
NULLITY OF CURVATURE TENSOR
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Homogeneous Riemannian manifolds with non-trivial nullity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-05T15:13:51Z
dc.journal.volume
27
dc.journal.number
1
dc.journal.pagination
31-72
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Di Scala, Antonio Jose'. Politecnico Di Torino. Ditatimento Di Matemática; Italia
dc.description.fil
Fil: Olmos, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.description.fil
Fil: Vittone, Francisco. Universidad Nacional de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Transformation Groups
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00031-020-09611-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00031-020-09611-2
Archivos asociados