Mostrar el registro sencillo del ítem

dc.contributor.author
Rossi Fernandez, Ana Cecilia  
dc.contributor.author
Meier, Lorena Alejandra  
dc.contributor.author
Castellani, Norberto Jorge  
dc.date.available
2023-07-11T15:47:04Z  
dc.date.issued
2022-06  
dc.identifier.citation
Rossi Fernandez, Ana Cecilia; Meier, Lorena Alejandra; Castellani, Norberto Jorge; Theoretical insight on dopamine, ascorbic acid and uric acid adsorption on graphene as material for biosensors; Elsevier; Computational and Theoretical Chemistry; 1212; 6-2022; 1-15  
dc.identifier.issn
2210-271X  
dc.identifier.uri
http://hdl.handle.net/11336/203292  
dc.description.abstract
In the present work, the interaction of dopamine (DA), ascorbic acid (AA) and uric acid (UA) molecules with graphene, with and without divacancies, has been theoretically studied within the framework of Density Functional Theory (DFT), in particular, paying attention on those surface properties relevant for field effect transistor (FET) and electrochemical biosensor applications. Several adsorption modes for these molecules were examined, and the main sources of adsorbate–substrate bonding were considered. The electric dipole moment for these molecules, when adsorbed, suffers in some cases large modifications due to conformational changes. The perpendicular component of dipole moment has a main molecular contribution molecule and another from the adsorbate–substrate polarization. The proposed reaction models of DA, AA and UA oxidations, show a good agreement with the oxidation potential ordering obtained in electrochemical experiments, i.e., UA > DA > AA. A spreading of reaction energies is observed due to the heterogeneity in adsorption modes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ASCORBIC ACID  
dc.subject
DOPAMINE  
dc.subject
ELECTROCHEMICAL BIOSENSORS  
dc.subject
FET BIOSENSORS  
dc.subject
GRAPHENE  
dc.subject
URIC ACID  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Theoretical insight on dopamine, ascorbic acid and uric acid adsorption on graphene as material for biosensors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T21:14:03Z  
dc.journal.volume
1212  
dc.journal.pagination
1-15  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rossi Fernandez, Ana Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina  
dc.description.fil
Fil: Meier, Lorena Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.description.fil
Fil: Castellani, Norberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina  
dc.journal.title
Computational and Theoretical Chemistry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2210271X22001189  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.comptc.2022.113705