Artículo
A reduction formula for Waring numbers through generalized Paley graphs
Fecha de publicación:
25/08/2022
Editorial:
Springer
Revista:
Journal Of Algebraic Combinatorics
ISSN:
0925-9899
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We give a reduction formula for the Waring number g(k, q) over a finite field Fq. By exploiting the relation between g(k, q) with the diameter of the generalized Paley graph Γ (k, q) and by using the characterization due to Pearce and Praeger (2019) of those Γ (k, q) which are Cartesian decomposable, we obtain the reduction formula g(pab-1bc,pab)=bg(pa-1c,pa)for p prime and a, b, c positive integers under certain arithmetic conditions. Then, we find some arithmetic conditions to apply the formula above, which allow us to obtain many infinite families of explicit values of Waring numbers. Finally, we use the reduction formula together with the characterization of 2-weight irreducible cyclic codes due to Schmidt and White (2002) to find infinite families of explicit even values of g(k, q).
Palabras clave:
CYCLIC CODES
,
FINITE FIELDS
,
GENERALIZED PALEY GRAPHS
,
WARING NUMBER
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Podesta, Ricardo Alberto; Videla Guzman, Denis Eduardo; A reduction formula for Waring numbers through generalized Paley graphs; Springer; Journal Of Algebraic Combinatorics; 56; 4; 25-8-2022; 1255-1285
Compartir
Altmétricas