Artículo
A note on étale representations from nilpotent orbits
Fecha de publicación:
08/2022
Editorial:
Australian Mathematics Publ Assoc Inc
Revista:
Bulletin Of The Australian Mathematical Society
ISSN:
0004-9727
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A linear étale representation of a complex algebraic group G is given by a complex algebraic G-module V such that G has a Zariski-open orbit in V and. A current line of research investigates which reductive algebraic groups admit such étale representations, with a focus on understanding common features of étale representations. One source of new examples arises from the classification theory of nilpotent orbits in semisimple Lie algebras. We survey what is known about reductive algebraic groups with étale representations and then discuss two classical constructions for nilpotent orbit classifications due to Vinberg and to Bala and Carter. We determine which reductive groups and étale representations arise in these constructions and we work out in detail the relation between these two constructions.
Palabras clave:
MATHEMATICS
,
20G05 17B10 22E46
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Dietrich, Heiko; Globke, Wolfgang; Origlia, Marcos Miguel; A note on étale representations from nilpotent orbits; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 106; 1; 8-2022; 113-125
Compartir
Altmétricas