Mostrar el registro sencillo del ítem
dc.contributor.author
Dávila Kurbán, Federico
dc.contributor.author
Lares, Marcelo
dc.contributor.author
Garcia Lambas, Diego Rodolfo
dc.date.available
2023-07-10T16:05:56Z
dc.date.issued
2022-02
dc.identifier.citation
Dávila Kurbán, Federico; Lares, Marcelo; Garcia Lambas, Diego Rodolfo; A statistical formalism for alignment analysis; Cornell University; ArXiv.org; 2-2022
dc.identifier.issn
2331-8422
dc.identifier.uri
http://hdl.handle.net/11336/203025
dc.description.abstract
The detection of anisotropies with respect to a given direction in a vector field is a common problem in astronomy. Several methods have been proposed that rely on the distribution of the acute angles between the data and a reference direction. Different approaches use Monte Carlo methods to quantify the statistical significance of a signal, although often lacking an analytical framework. Here we present two methods to detect and quantify alignment signals and test their statistical robustness. The first method considers the deviance of the relative fraction of vector components in the plane perpendicular to a reference direction with respect to an isotropic distribution. We also derive the statistical properties and stability of the resulting estimator, and therefore does not rely on Monte Carlo simulations to assess its statistical significance. The second method is based on a fit over the residuals of the empirical cumulative distribution function with respect to that expected for a uniform distribution, using a small set of harmonic orthogonal functions, which does not rely on any binning scheme. We compare these methods with others commonly used in the literature, using Monte Carlo simulations, finding that the proposed statistics allow the detection of alignment signals with greater significance.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Cornell University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
METHODS: STATISTICAL
dc.subject
METHODS: NUMERICAL
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A statistical formalism for alignment analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-06T11:39:49Z
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Ithaca
dc.description.fil
Fil: Dávila Kurbán, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.description.fil
Fil: Lares, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
dc.description.fil
Fil: Garcia Lambas, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
dc.journal.title
ArXiv.org
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.48550/arXiv.2202.13244
Archivos asociados