Mostrar el registro sencillo del ítem

dc.contributor.author
Robles, Sandra  
dc.contributor.author
Gómez, Jonathan S  
dc.contributor.author
Ramírez Rivera, Adín  
dc.contributor.author
Padilla, Nelson David  
dc.contributor.author
Dujovne, Diego  
dc.date.available
2023-07-07T18:46:42Z  
dc.date.issued
2022-08  
dc.identifier.citation
Robles, Sandra; Gómez, Jonathan S; Ramírez Rivera, Adín; Padilla, Nelson David; Dujovne, Diego; A deep learning approach to halo merger tree construction; Oxford Univ Press Inc; Monthly Notices of the Royal Astronomical Society; 514; 3; 8-2022; 3692-3708  
dc.identifier.issn
0035-8711  
dc.identifier.uri
http://hdl.handle.net/11336/202767  
dc.description.abstract
A key ingredient for semi-analytic models of galaxy formation is the mass assembly history of haloes, encoded in a tree structure. The most commonly used method to construct halo merger histories is based on the outcomes of high-resolution, computationally intensive N-body simulations. We show that machine learning (ML) techniques, in particular Generative Adversarial Networks (GANs), are a promising new tool to tackle this problem with a modest computational cost and retaining the best features of merger trees from simulations. We train our GAN model with a limited sample of merger trees from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation suite, constructed using two halo finders-tree builder algorithms: SUBFIND-D-TREES and ROCKSTAR-ConsistentTrees. Our GAN model successfully learns to generate well-constructed merger tree structures with high temporal resolution, and to reproduce the statistical features of the sample of merger trees used for training, when considering up to three variables in the training process. These inputs, whose representations are also learned by our GAN model, are mass of the halo progenitors and the final descendant, progenitor type (main halo or satellite), and distance of a progenitor to that in the main branch. The inclusion of the latter two inputs greatly improves the final learned representation of the halo mass growth history, especially for SUBFIND-like ML trees. When comparing equally sized samples of ML merger trees with those of the EAGLE simulation, we find better agreement for SUBFIND-like ML trees. Finally, our GAN-based framework can be utilized to construct merger histories of low-and intermediate-mass haloes, the most abundant in cosmological simulations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford Univ Press Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
(COSMOLOGY:) DARK MATTER  
dc.subject
GALAXIES: EVOLUTION  
dc.subject
GALAXIES: FORMATION  
dc.subject
GALAXIES: HALOES  
dc.subject
METHODS: NUMERICAL  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A deep learning approach to halo merger tree construction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T11:30:17Z  
dc.journal.volume
514  
dc.journal.number
3  
dc.journal.pagination
3692-3708  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Robles, Sandra. Universidad Autónoma de Madrid; España. Kings College London (kcl); . University of Melbourne; Australia  
dc.description.fil
Fil: Gómez, Jonathan S. Universidad Católica de Chile; Chile. Universidad Autónoma de Madrid; España. Pontificia Universidad Católica de Chile; Chile  
dc.description.fil
Fil: Ramírez Rivera, Adín. University of Oslo; Noruega  
dc.description.fil
Fil: Padilla, Nelson David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina  
dc.description.fil
Fil: Dujovne, Diego. Universidad Diego Portales; Chile  
dc.journal.title
Monthly Notices of the Royal Astronomical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/mnras/stac1569  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/514/3/3692/6604886  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2205.15988