Mostrar el registro sencillo del ítem
dc.contributor.author
Emmanuele, Daniela Beatriz
dc.contributor.author
Salvai, Marcos Luis
dc.contributor.author
Vittone, Francisco
dc.date.available
2023-07-05T16:47:47Z
dc.date.issued
2022-06-02
dc.identifier.citation
Emmanuele, Daniela Beatriz; Salvai, Marcos Luis; Vittone, Francisco; Möbius fluid dynamics on the unitary groups; Springer; Regular And Chaotic Dynamics; 27; 3; 2-6-2022; 333-351
dc.identifier.issn
1560-3547
dc.identifier.uri
http://hdl.handle.net/11336/202486
dc.description.abstract
We study the nonrigid dynamics induced by the standard birational actions of the split unitary groups G=O_o(n,n), SU ( n,n) and Sp(n,n) on the compact classical Lie groups M = SO_n, U_n and Sp_n, respectively. More precisely, we study the geometry of G endowed with the kinetic energy metric associated with the action of G on M, assuming that M carries its canonical bi-invariant Riemannian metric and has initially a homogeneous distribution of mass. By the leastaction principle, force free motions (thought of as curves in G) correspond to geodesics of G. The geodesic equation may be understood as an inviscid Burgers equation with Möbius constraints. We prove that the kinetic energy metric on G is not complete and in particular not invariant, find symmetries and totally geodesic submanifolds of G and address the question under which conditions geodesics of rigid motions are geodesics of G. Besides, we study equivalences with the dynamics of conformal and projective motions of the sphere in low dimensions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
KINETIC ENERGY METRIC
dc.subject
SPLIT UNITARY GROUP
dc.subject
MÖBIUS ACTION
dc.subject
INVISCID BURGERS EQUATION
dc.subject
FORCE-FREE MOTION
dc.subject
NONROGOD DYNAMICS
dc.subject
UNITARY GROUP
dc.subject
MAXIMAL ISOTROPIC SUBSPACE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Möbius fluid dynamics on the unitary groups
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-05T15:12:04Z
dc.identifier.eissn
1468-4845
dc.journal.volume
27
dc.journal.number
3
dc.journal.pagination
333-351
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Emmanuele, Daniela Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
dc.description.fil
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.description.fil
Fil: Vittone, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
dc.journal.title
Regular And Chaotic Dynamics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1134/S1560354722030054
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1134/S1560354722030054
Archivos asociados