Mostrar el registro sencillo del ítem

dc.contributor.author
Emmanuele, Daniela Beatriz  
dc.contributor.author
Salvai, Marcos Luis  
dc.contributor.author
Vittone, Francisco  
dc.date.available
2023-07-05T16:47:47Z  
dc.date.issued
2022-06-02  
dc.identifier.citation
Emmanuele, Daniela Beatriz; Salvai, Marcos Luis; Vittone, Francisco; Möbius fluid dynamics on the unitary groups; Springer; Regular And Chaotic Dynamics; 27; 3; 2-6-2022; 333-351  
dc.identifier.issn
1560-3547  
dc.identifier.uri
http://hdl.handle.net/11336/202486  
dc.description.abstract
We study the nonrigid dynamics induced by the standard birational actions of the split unitary groups G=O_o(n,n), SU ( n,n) and Sp(n,n) on the compact classical Lie groups M = SO_n, U_n and Sp_n, respectively. More precisely, we study the geometry of G endowed with the kinetic energy metric associated with the action of G on M, assuming that M carries its canonical bi-invariant Riemannian metric and has initially a homogeneous distribution of mass. By the leastaction principle, force free motions (thought of as curves in G) correspond to geodesics of G. The geodesic equation may be understood as an inviscid Burgers equation with Möbius constraints. We prove that the kinetic energy metric on G is not complete and in particular not invariant, find symmetries and totally geodesic submanifolds of G and address the question under which conditions geodesics of rigid motions are geodesics of G. Besides, we study equivalences with the dynamics of conformal and projective motions of the sphere in low dimensions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
KINETIC ENERGY METRIC  
dc.subject
SPLIT UNITARY GROUP  
dc.subject
MÖBIUS ACTION  
dc.subject
INVISCID BURGERS EQUATION  
dc.subject
FORCE-FREE MOTION  
dc.subject
NONROGOD DYNAMICS  
dc.subject
UNITARY GROUP  
dc.subject
MAXIMAL ISOTROPIC SUBSPACE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Möbius fluid dynamics on the unitary groups  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-05T15:12:04Z  
dc.identifier.eissn
1468-4845  
dc.journal.volume
27  
dc.journal.number
3  
dc.journal.pagination
333-351  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Emmanuele, Daniela Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina  
dc.description.fil
Fil: Salvai, Marcos Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina  
dc.description.fil
Fil: Vittone, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina  
dc.journal.title
Regular And Chaotic Dynamics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1134/S1560354722030054  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1134/S1560354722030054