Mostrar el registro sencillo del ítem

dc.contributor.author
Moyano, Jaime  
dc.contributor.author
Zamora Nasca, Lucía Belén  
dc.contributor.author
Caplat, Paul  
dc.contributor.author
García Díaz, Pablo  
dc.contributor.author
Langdon, Bárbara  
dc.contributor.author
Lambin, Xavier  
dc.contributor.author
Montti, Lia Fernanda  
dc.contributor.author
Pauchard, Aníbal  
dc.contributor.author
Nuñez, Martin Andres  
dc.date.available
2023-07-04T19:07:47Z  
dc.date.issued
2023-01  
dc.identifier.citation
Moyano, Jaime; Zamora Nasca, Lucía Belén; Caplat, Paul; García Díaz, Pablo; Langdon, Bárbara; et al.; Predicting the impact of invasive trees from different measures of abundance; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 325; 1-2023; 1-11  
dc.identifier.issn
0301-4797  
dc.identifier.uri
http://hdl.handle.net/11336/202356  
dc.description.abstract
Biological invasions produce negative impacts worldwide, causing massive economic costs and ecological impacts. Knowing the relationship between invasive species abundance and the magnitude of their impacts (abundance-impact curves) is critical to designing prevention and management strategies that effectively tackle these impacts. However, different measures of abundance may produce different abundance-impact curves. Woody plants are among the most transformative invaders, especially in grassland ecosystems because of the introduction of hitherto absent life forms. In this study, our first goal was to assess the impact of a woody invader, Pinus contorta (hereafter pine), on native grassland productivity and livestock grazing in Patagonia (Argentina), building abundance-impact curves. Our second goal, was to compare different measure of pine abundance (density, basal area and canopy cover) as predictors of pine's impact on grassland productivity. Our third goal, was to compare abundance-impact curves among the mentioned measures of pine abundance and among different measures of impact: total grassland productivity, palatable productivity and sheep stocking rate (the number of sheep that the grassland can sustainably support). Pine canopy cover, closely followed by basal area, was the measure of abundance that best explained the impact on grassland productivity, but the shape of abundance impact curves differed between measures of abundance. While increases in pine density and basal area always reduced grassland productivity, pine canopy cover below 30% slightly increased grassland productivity and higher values caused an exponential decline. This increase in grassland productivity with low levels of pine canopy cover could be explained by the amelioration of stressful abiotic conditions for grassland species. Different measures of impact, namely total productivity, palatable productivity and sheep stocking rate, drew very similar results. Our abundance-impact curves are key to guide the management of invasive pines because a proper assessment of how many invasive individuals (per surface unit) are unacceptable, according to environmental or economic impact thresholds, is fundamental to define when to start management actions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GRASSLANDS  
dc.subject
IMPACT-BASED MANAGEMENT  
dc.subject
LIVESTOCK GRAZING  
dc.subject
PINUS  
dc.subject
PRIMARY PRODUCTIVITY  
dc.subject
WOODY INVASIONS  
dc.subject.classification
Ecología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Predicting the impact of invasive trees from different measures of abundance  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-29T10:07:23Z  
dc.identifier.eissn
1095-8630  
dc.journal.volume
325  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Moyano, Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.description.fil
Fil: Zamora Nasca, Lucía Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.description.fil
Fil: Caplat, Paul. The Queens University of Belfast; Irlanda  
dc.description.fil
Fil: García Díaz, Pablo. University Of Aberdeen. School Of Biological Sciences.; Reino Unido  
dc.description.fil
Fil: Langdon, Bárbara. Universidad de Concepción; Chile. Instituto de Ecología y Biodiversidad; Chile  
dc.description.fil
Fil: Lambin, Xavier. University Of Aberdeeen; Reino Unido  
dc.description.fil
Fil: Montti, Lia Fernanda. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; Argentina  
dc.description.fil
Fil: Pauchard, Aníbal. Universidad de Concepción; Chile. Instituto de Ecología y Biodiversidad; Chile  
dc.description.fil
Fil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. University of Houston; Estados Unidos  
dc.journal.title
Journal of Environmental Management  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0301479722020539  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jenvman.2022.116480