Mostrar el registro sencillo del ítem
dc.contributor.author
Barreiro, Nadia Luisina
dc.contributor.author
Govezensky, T.
dc.contributor.author
Ventura, Cecilia Ileana
dc.contributor.author
Nuñez, Matias
dc.contributor.author
Bolcatto, Pablo Guillermo
dc.contributor.author
Barrio, R. A.
dc.date.available
2023-07-04T17:46:20Z
dc.date.issued
2022-12
dc.identifier.citation
Barreiro, Nadia Luisina; Govezensky, T.; Ventura, Cecilia Ileana; Nuñez, Matias; Bolcatto, Pablo Guillermo; et al.; Modelling the interplay of SARS-CoV-2 variants in the United Kingdom; Nature; Scientific Reports; 12; 1; 12-2022; 1-8
dc.identifier.issn
2045-2322
dc.identifier.uri
http://hdl.handle.net/11336/202320
dc.description.abstract
Many COVID-19 vaccines are proving to be highly effective to prevent severe disease and to diminish infections. Their uneven geographical distribution favors the appearance of new variants of concern, as the highly transmissible Delta variant, affecting particularly non-vaccinated people. It is important to device reliable models to analyze the spread of the different variants. A key factor is to consider the effects of vaccination as well as other measures used to contain the pandemic like social behaviour. The stochastic geographical model presented here, fulfills these requirements. It is based on an extended compartmental model that includes various strains and vaccination strategies, allowing to study the emergence and dynamics of the new COVID-19 variants. The model conveniently separates the parameters related to the disease from the ones related to social behavior and mobility restrictions. We applied the model to the United Kingdom by using available data to fit the recurrence of the currently prevalent variants. Our computer simulations allow to describe the appearance of periodic waves and the features that determine the prevalence of certain variants. They also provide useful predictions to help planning future vaccination boosters. We stress that the model could be applied to any other country of interest.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
COVID-19
dc.subject
Vaccines
dc.subject
Strains
dc.subject
United Kingdom
dc.subject.classification
Epidemiología
dc.subject.classification
Ciencias de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
Modelling the interplay of SARS-CoV-2 variants in the United Kingdom
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-06-29T10:08:26Z
dc.journal.volume
12
dc.journal.number
1
dc.journal.pagination
1-8
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Barreiro, Nadia Luisina. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina
dc.description.fil
Fil: Govezensky, T.. Universidad Nacional Autónoma de México; México
dc.description.fil
Fil: Ventura, Cecilia Ileana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
dc.description.fil
Fil: Nuñez, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina
dc.description.fil
Fil: Bolcatto, Pablo Guillermo. Ministerio de Defensa. Instituto de Investigaciones Científicas y Técnicas para la Defensa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Barrio, R. A.. Universidad Nacional Autónoma de México; México
dc.journal.title
Scientific Reports
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-022-16147-w
Archivos asociados