Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The Great Martian Catastrophe and how Tycho (Re-)fixed it

Carman, Christian CarlosIcon
Fecha de publicación: 05/2022
Editorial: Brepols Publishers
Revista: Almagest
ISSN: 1792-2593
e-ISSN: 2507-0371
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Filosofía, Historia y Filosofía de la Ciencia y la Tecnología

Resumen

During Kepler’s time the ephemerides of the longitude of Mars were mainly calculated using the Alfonsine and the Prutenic tables. The error in the prediction of the longitudes was usually about 2 degrees for both, but in some critical situations, it could reach 5 degrees (in singular catastrophic events, as Owen Gingerich labeled them). Kepler’s Rudolphine tables diminish the error to just minutes of arc. Kepler introduced three novelties, all improving Mars’ predictions: 1) he made the orbits elliptical (first law), 2) he replaced the equant point by the area law (second law), and, finally 3) he bisected the orbit of the Earth. James Voelkel and Gingerich analyzed the degree of responsibility that each of Kepler’s novelties has in the improvement of the predictions of Mars’ longitude and suggest that while around 0.5 degree of the error is solved introducing the first two laws, the remaining around 4.5 degrees disappear once you introduce the bisection of the orbit of the Earth. In this paper I will argue that the distribution of the responsibility is actually different: while 0.5 degree must be attributed to the first two laws, only another 0.5 must be attributed to the bisection of the eccentricity of the Earth, and the remaining around 4 degrees are due to an error in the longitude of the apogee. There is evidence that Tycho and Longomontanus had a correct value of the longitude of the apogee before Kepler’s arrival to work with them in Prague. Therefore, it was Tycho and not Kepler who solved the main part of the catastrophe of Mars, even if not the most difficult one.
Palabras clave: KEPLER , PTOLEMY , AREA LAW , EQUANT POINT
Ver el registro completo
 
Archivos asociados
Tamaño: 310.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/202267
URL: https://www.brepolsonline.net/doi/10.1484/J.ALMAGEST.5.131488
DOI: http://dx.doi.org/10.1484/J.ALMAGEST.5.131488
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Carman, Christian Carlos; The Great Martian Catastrophe and how Tycho (Re-)fixed it; Brepols Publishers; Almagest; 13; 1; 5-2022; 42-57
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES