Artículo
On Blaschke products, Bloch functions and normal functions
Fecha de publicación:
02/2011
Editorial:
Universidad Complutense de Madrid
Revista:
Revista Matematica Complutense
ISSN:
1139-1138
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove that if G is an analytic function in the unit disc such that G(z)→∞, as z→1, and B is an infinite Blaschke product whose sequence of zeros is contained in a Stolz angle with vertex at 1 then the function f=B⋅G is not a normal function.
We prove also some results on the asymptotic cluster set of a thin Blaschke product with positive zeros which are related with the question of the existence of non-normal outer functions with restricted mean growth of the derivative.
Palabras clave:
Blashke Product
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Girela, Daniel; Suarez, Fernando Daniel; On Blaschke products, Bloch functions and normal functions; Universidad Complutense de Madrid; Revista Matematica Complutense; 24; 1; 2-2011; 49-57
Compartir
Altmétricas