Mostrar el registro sencillo del ítem
dc.contributor.author
Massey, Pedro Gustavo
dc.contributor.author
Rios, Noelia Belén
dc.contributor.author
Stojanoff, Demetrio
dc.date.available
2017-07-12T15:15:48Z
dc.date.issued
2017-04-12
dc.identifier.citation
Massey, Pedro Gustavo; Rios, Noelia Belén; Stojanoff, Demetrio; Frame completions with prescribed norms: local minimizers and applications; Springer; Advances In Computational Mathematics; 12-4-2017; 1-36
dc.identifier.issn
1019-7168
dc.identifier.uri
http://hdl.handle.net/11336/20215
dc.description.abstract
Let F0 = {fi}i∈In0 be a finite sequence of vectors in Cd and let a = (ai)i∈Ik be a finite sequence of positive numbers, where In = {1,...,n} for n ∈ N. We consider the completions of F0 of the form F = (F0, G) obtained by appending a sequence G = {gi}i∈Ik of vectors in Cd such that gi2 = ai for i ∈ Ik, and endow the set of completions with the metric d(F, F˜) = max{ gi − ˜gi : i ∈ Ik} where F˜ = (F0, G˜). In this context we show that local minimizers on the set of completions of a convex potential Pϕ, induced by a strictly convex function ϕ, are also global minimizers. In case that ϕ(x) = x2 then Pϕ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Frame Completions
dc.subject
Convex Potential
dc.subject
Local Minimum
dc.subject
Majorization
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Frame completions with prescribed norms: local minimizers and applications
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-12T13:19:25Z
dc.journal.pagination
1-36
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Massey, Pedro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
dc.description.fil
Fil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
dc.description.fil
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
dc.journal.title
Advances In Computational Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10444-017-9535-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10444-017-9535-y
Archivos asociados