Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.date.available
2017-07-12T15:15:24Z  
dc.date.issued
2016-08  
dc.identifier.citation
Andruchow, Esteban; Classes of Idempotents in Hilbert Space; Springer; Complex Analysis And Operator Theory; 10; 6; 8-2016; 1383-1409  
dc.identifier.issn
1661-8254  
dc.identifier.uri
http://hdl.handle.net/11336/20211  
dc.description.abstract
An idempotent operator E in a Hilbert space H(E2= 1) is written as a 2 × 2 matrix in terms of the orthogonal decomposition H=R(E)⊕R(E)⊥(R(E) is the range of E) as (Formula Presented). We study the sets of idempotents that one obtains when E1 , 2: R(E)⊥→ R(E) is a special type of operator: compact, Fredholm and injective with dense range, among others.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Idempotent Operators  
dc.subject
Projections  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Classes of Idempotents in Hilbert Space  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-12T13:19:30Z  
dc.journal.volume
10  
dc.journal.number
6  
dc.journal.pagination
1383-1409  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina  
dc.journal.title
Complex Analysis And Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11785-016-0546-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11785-016-0546-3