Artículo
Larotonda spaces: Homogeneous spaces and conditional expectations
Fecha de publicación:
02/2016
Editorial:
World Scientific
Revista:
International Journal Of Mathematics
ISSN:
0129-167X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We define a Larotonda space as a quotient space P = UA/UB of the unitary groups of C ∗ -algebras 1 ∈ B ⊂ A with a faithful unital conditional expectation Φ : A → B. In particular, B is complemented in A, a fact which implies that P has C∞ differentiable structure, with the topology induced by the norm of A. The conditional expectation also allows one to define a reductive structure (in particular, a linear connection) and a UAinvariant Finsler metric in P. given a point ρ ∈ P and a tangent vector X ∈ (TP)ρ, we consider the problem of wether the geodesic δ of the linear connection satisfying these inital data is (locally) minimal for the metric. We find a sufficient condition. Several examples are given, of locally minimal geodesics.
Palabras clave:
Finsler Metric
,
Geodesic
,
Homogeneous Space
,
Unitary Group of A C-Algebra
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Recht, Lázaro; Larotonda spaces: Homogeneous spaces and conditional expectations; World Scientific; International Journal Of Mathematics; 27; 2; 2-2016; 1-17; 1650002
Compartir
Altmétricas