Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Gravitational wave surrogates through automated machine learning

Barsotti, Damián; Cerino, FrancoIcon ; Tiglio, ManuelIcon ; Villanueva, Uziel AarónIcon
Fecha de publicación: 03/2022
Editorial: IOP Publishing
Revista: Classical and Quantum Gravity
ISSN: 0264-9381
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía; Ciencias de la Computación

Resumen

We analyze a prospect for predicting gravitational waveforms from compact binaries based on automated machine learning (AutoML) from around a hundred different possible regression models, without having to resort to tedious and manual case-by-case analyses and fine-tuning. The particular study of this article is within the context of the gravitational waves emitted by the collision of two spinless black holes in initial quasi-circular orbit. We find, for example, that approaches such as Gaussian process regression with radial bases as kernels, an approach which is generalizable to multiple dimensions with low computational evaluation cost, do provide a sufficiently accurate solution. The results here presented suggest that AutoML might provide a framework for regression in the field of surrogates for gravitational waveforms. Our study is within the context of surrogates of numerical relativity simulations based on reduced basis and the empirical interpolation method, where we find that for the particular case analyzed AutoML can produce surrogates which are essentially indistinguishable from the NR simulations themselves.
Palabras clave: MACHINE LEARNING , REDUCED ORDER MODELING , WAVEFORM SURROGATES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.455Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/201568
URL: https://iopscience.iop.org/article/10.1088/1361-6382/ac5ba1
DOI: http://dx.doi.org/10.1088/1361-6382/ac5ba1
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Barsotti, Damián; Cerino, Franco; Tiglio, Manuel; Villanueva, Uziel Aarón; Gravitational wave surrogates through automated machine learning; IOP Publishing; Classical and Quantum Gravity; 39; 8; 3-2022; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES