Mostrar el registro sencillo del ítem

dc.contributor.author
Micheletto, Matías Javier  
dc.contributor.author
Chesñevar, Carlos Iván  
dc.contributor.author
Santos, Rodrigo Martin  
dc.date.available
2023-06-16T18:47:35Z  
dc.date.issued
2022-09  
dc.identifier.citation
Micheletto, Matías Javier; Chesñevar, Carlos Iván; Santos, Rodrigo Martin; A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms; Comsis Consortium; Computer Science And Information Systems; 19; 3; 9-2022; 1199-1212  
dc.identifier.issn
1820-0214  
dc.identifier.uri
http://hdl.handle.net/11336/200891  
dc.description.abstract
Classifying human gestures using surface electromyografic sensors (sEMG) is a challenging task. Wearable sensors have proven to be extremely useful in this context, but their performance is limited by several factors (signal noise, computing resources, battery consumption, etc.). In particular, computing resources impose a limitation in many application scenarios, in which lightweight classification approaches are desirable. Recent research has shown that machine learning techniques are useful for human gesture classification once their salient features have been determined. This paper presents a novel approach for human gesture classification in which two different strategies are combined: a) a technique based on autoencoders is used to perform feature extraction; b) two alternative machine learning algorithms (namely J48 and K*) are then used for the classification stage. Empirical results are provided, showing that for limited computing power platforms our approach outperforms other alternative methodologies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Comsis Consortium  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTOENCODER  
dc.subject
DECISION TREES  
dc.subject
GESTURE RECOGNITION  
dc.subject
NEAREST NEIGHBOORS  
dc.subject
SEMG  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A novel Approach for sEMG Gesture Recognition using Resource-constrained Hardware Platforms  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-16T12:59:39Z  
dc.journal.volume
19  
dc.journal.number
3  
dc.journal.pagination
1199-1212  
dc.journal.pais
Serbia  
dc.journal.ciudad
Novi Sad  
dc.description.fil
Fil: Micheletto, Matías Javier. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia Golfo San Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia Golfo San Jorge. Universidad Nacional de la Patagonia "San Juan Bosco". Centro de Investigaciones y Transferencia Golfo San Jorge; Argentina  
dc.description.fil
Fil: Chesñevar, Carlos Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
Computer Science And Information Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doiserbia.nb.rs/Article.aspx?ID=1820-02142200025M  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2298/CSIS220228025M