Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Body volume and mass estimation of southern elephant seals using 3D range scanning and neural network models

Eder, Elena BeatrizIcon ; Almonacid, Jonathan SamuelIcon ; Delrieux, Claudio AugustoIcon ; Lewis, Mirtha NoemiIcon
Fecha de publicación: 07/2022
Editorial: Wiley Blackwell Publishing, Inc
Revista: Marine Mammal Science
ISSN: 0824-0469
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Naturales y Exactas

Resumen

Direct measures of body mass of marine mammals are logistically complicated to obtain even for pinnipeds. An alternative method for mass estimation based on 3D imaging technology and automated processing algorithms, was tested in southern elephant seals (Mirounga leonina). Two models of artificial neural networks (ANN)—nonlinear neural network and self-organizing maps—were trained to compute the volume and to estimate the mass of the digital models, previously obtained by scanning individuals with an infrared light sensor. Body mass estimates were as accurate (mean % error = 4.4) as estimates in previous photogrammetry studies in southern elephant seals and the mass predictive ability of the trained ANN was higher (99% of the variance explained) than other predictive models using photogrammetry in pinniped studies. While this method has proven to produce accurate body mass estimates, it also overcame some of the constraints of other indirect techniques, avoiding animal disturbance caused by physical restraint or chemical immobilization, minimizing risks, and capitalizing on the time working in the field. The results of these estimations were promising, which shows that the proposed methodology can provide adequate results with lower logistic and computational requirements.
Palabras clave: 3D IMAGING TECHNOLOGY , BODY VOLUME AND MASS ESTIMATION , MARINE MAMMALS , NEURAL NETWORK MODELS
Ver el registro completo
 
Archivos asociados
Tamaño: 833.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/200384
URL: https://onlinelibrary.wiley.com/doi/10.1111/mms.12910
DOI: http://dx.doi.org/10.1111/mms.12910
Colecciones
Articulos(CESIMAR)
Articulos de CENTRO PARA EL ESTUDIO DE SISTEMAS MARINOS
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Eder, Elena Beatriz; Almonacid, Jonathan Samuel; Delrieux, Claudio Augusto; Lewis, Mirtha Noemi; Body volume and mass estimation of southern elephant seals using 3D range scanning and neural network models; Wiley Blackwell Publishing, Inc; Marine Mammal Science; 38; 3; 7-2022; 1037-1049
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES