Artículo
The polarization constant of finite dimensional complex spaces is one
Fecha de publicación:
01/2022
Editorial:
Cambridge University Press
Revista:
Mathematical Proceedings Of The Cambridge Philosophical Society
ISSN:
0305-0041
e-ISSN:
1469-8064
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The polarization constant of a Banach space X is defined as 'Equation Presented' where stands for the best constant C> 0 such that ||Pˇ|| ≤ C||P|| for every k-homogeneous polynomial P ∈ ℘ (kX). We show that if X is a finite dimensional complex space thenc(X)=1. We derive some consequences of this fact regarding the convergence of analytic functions on such spaces. The result is no longer true in the real setting. Here we relate this constant with the so-called Bochnak's complexification procedure. We also study some other properties connected with polarization. Namely, we provide necessary conditions related to the geometry of X for c(2,X)=1 to hold. Additionally we link polarization constants with certain estimates of the nuclear norm of the product of polynomials.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Dimant, Veronica Isabel; Galicer, Daniel Eric; Rodríguez, Jorge Tomás; The polarization constant of finite dimensional complex spaces is one; Cambridge University Press; Mathematical Proceedings Of The Cambridge Philosophical Society; 172; 1; 1-2022; 105-123
Compartir
Altmétricas