Artículo
A relaxed constant positive linear dependence constraint qualification and applications
Fecha de publicación:
10/2012
Editorial:
Springer
Revista:
Mathematical Programming
ISSN:
0025-5610
e-ISSN:
1436-4646
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie’s constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Andreani, Roberto; Haeser, Gabriel; Schuverdt, María Laura; Silva, Paulo J. S.; A relaxed constant positive linear dependence constraint qualification and applications; Springer; Mathematical Programming; 135; 10-2012; 255-273
Compartir