Mostrar el registro sencillo del ítem
dc.contributor.author
González Manteiga, Wenceslao
dc.contributor.author
Henry, Guillermo Sebastian
dc.contributor.author
Rodriguez, Daniela Andrea
dc.date.available
2017-07-10T17:47:31Z
dc.date.issued
2012-05
dc.identifier.citation
González Manteiga, Wenceslao; Henry, Guillermo Sebastian; Rodriguez, Daniela Andrea; Partly linear models on Riemannian manifolds; Taylor & Francis; Journal of Applied Statistics; 39; 8; 5-2012; 1797-1809
dc.identifier.issn
0266-4763
dc.identifier.uri
http://hdl.handle.net/11336/19993
dc.description.abstract
In partly linear models, the dependence of the response y on (xT, t) is modeled through the relationship y = xTβ + g(t) + ε, where ε is independent of (xT, t). We are interested in developing an estimation procedure that allows us to combine the flexibility of the partly linear models, studied by several authors, but including some variables that belong to a non-Euclidean space. The motivating application of this paper deals with the explanation of the atmospheric SO2 pollution incidents using these models when some of the predictive variables belong in a cylinder. In this paper, the estimators of β and g are constructed when the explanatory variablest take values on a Riemannian manifold and the asymptotic properties of the proposed estimators are obtained under suitable conditions. We illustrate the use of this estimation approach using an environmental data set and we explore the performance of the estimators through a simulation study.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Hypothesis Test
dc.subject
Nonparametric Estimation
dc.subject
Partly Linear Models
dc.subject
Riemannian Manifolds
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Partly linear models on Riemannian manifolds
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-07T14:43:41Z
dc.identifier.eissn
1360-0532
dc.journal.volume
39
dc.journal.number
8
dc.journal.pagination
1797-1809
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España
dc.description.fil
Fil: Henry, Guillermo Sebastian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Rodriguez, Daniela Andrea. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Applied Statistics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/02664763.2012.683169
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/02664763.2012.683169
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1003.1573
Archivos asociados